INORGANIC MATERIALS AND CERAMIC MATRIX COMPOSITES |
|
|
|
|
|
3D Flower-ball-like Bismuth Molybdate Photocatalytic Degradation Diclofenac Sodium Under Simulate Visible-light |
CHEN Junlin1, CHANG Chun1,2,*
|
1 College of Chemical and Materials Engineering, Bohai University, Jinzhou 121013, Liaoning, China 2 College of Environmental and Chemical Engineering, Dalian University, Dalian 116622, Liaoning, China |
|
|
Abstract Bismuth molybdate (Bi2MoO6, BMO), as a good visible light responsive photocatalyst in bismuth based photocatalysts, has attracted widespread attention due to its non-toxic, low-cost, rich morphology, and excellent optical and chemical properties. Notably, the photocatalytic performance of bismuth molybdate is strongly influenced by its morphology and structure. Up to now, researchers have used different methods to synthesize bismuth molybdate under different pH, temperature, solvent, reaction time and surfactant conditions, in order to obtain various sizes and morphology of bismuth molybdate, including zero-dimensional, one-dimensional, two-dimensional and three-dimensional structures. Among them, the three-dimensional structure of BMO possesses better photodegradation activity for pollutants, as they provide good light capture, short photocarriers diffusion path route and rich active site. Herein, our study, here, use a simple solvothermal reaction to synthesize different time series of Bi2MoO6. Firstly, the experimental results show that BMO-24 (solvothermal time of 24 h) exhibits good carrier mobility, which possesses the best visible light driven photocatalytic efficiency. And after visible-light illumination for 300 min, 80% of diclofenac sodium (DCF) had been degraded. Furthermore, we analyze the phase composition, microstructure morphology, optical properties and electrochemical performance of Bi2MoO6. The results show that the change of solvothermal time has an important effect on the surface morphology, pore structure, active site and photocatalytic performance of Bi2MoO6. Finally, we conducted free radical capture experiments in order to further determine the involvement of active radical. On this basis, we found that ·O2- and h+ radicals are the main active species, playing a decisive role in the degradation react. In addition, after four cycles, Bi2MoO6 still exhibits excellent stability performance. This work provides a more reasonable design and guidance for the high-performance photocatalytic degradation of pollutants in water using photocatalysts.
|
Published: 25 October 2024
Online: 2024-11-05
|
|
Fund:Liaoning Revitalization Talents Program (XLYC1907173), the Science and Technology General Project of Liaoning Provincial Education Department (LJKMZ20221835). |
|
|
1 Jiménez-Salcedo M, Monge M, Tena M T, Journal of Environmental Chemical Engineering, 2021, 95, 105827. 2 Huang X, Mu W, Chang C. Environmental Science and Pollution Research, DOI:10.1007/s11356-023-26003-7. 3 Araujo L A, Bezerra C O, Cusioli L F, et al. Journal of Environmental Chemical Engineering, 2021, 96, 106629. 4 Liu F, Liang J, Chen L, et al. Journal of Molecular Liquids, 2019, 275, 807. 5 Liu D, Wang J Q, Zhou J, et al. Chemical Engineering Journal, 2019, 369, 968. 6 Ma N, Zhang N, Gao L, et al. Water, 2020, 12, 2902. 7 Yoo S H, Kang J K, Lee S C, et al. Journal of Environmental Chemical Engineering, 2021, 96, 106573. 8 Li S H, Gan Y Q, Shah S J, et al. Chemical Engineering Journal, 2021, 426, 131440. 9 Zhuang S, Liu Y, Wang J. Environmental Pollution, 2019, 253, 616. 10 Ye X X, Li Y, Lin H T, et al. Journal of Polymers and the Environment, 2021, 2910, 3401. 11 Bhadra B N, Seo P W, Jhung S H. Chemical Engineering Journal, 2016, 301, 27. 12 Zhang Y, Yin Z, Dai C, et al. Journal of Colloid and Interface Science, 2016, 481, 210. 13 Liang X X, Omer A M, Hu Z H, et al. Chemosphere, 2019, 217, 270. 14 Zhuang S T, Cheng R, Wang J L. Chemical Engineering Journal, 2019, 359, 354. 15 Cai M, Li R, Xie Z, et al. Applied Catalysis B: Environmental, 2019, 259, 118033. 16 Gao G, Shen J, Chu W, et al. Separation and Purification Technology, 2017, 173, 55. 17 Alharbi S K, Ansari A J, Nghiem L D, et al. Process Safety and Environmental Protection, 2022, 157, 106. 18 Li X, Huang S, Xu H, et al. Chinese Chemical Letters, 2022, 333, 1321. 19 Vogna D, Marotta R, Napolitano A, et al. Water Research, 2004, 382, 414. 20 Fujishima A, Honda K. Nature, 1972, 2385358, 37. 21 Zargazi M, Entezari M H. Ultrasonics Sonochemistry, 2020, 62, 104867. 22 Wang J, Dong M, Zhang Q, et al. Chinese Journal of Inorganic Chemistry, 2020, 36(5), 827(in Chinese) 王静羚, 董曼茹, 张起程, 等, 无机化学学报, 2020, 36(5), 827. 23 Wang J, Zhao C, Yuan S, et al. Journal of Colloid and Interface Science, 2023, 638, 427. 24 Xie Y, Shang X, Liu D, et al. Applied Catalysis B: Environmental, 2019, 259, 118087. 25 Li B, Liu S, Lai C, et al. Applied Catalysis B: Environmental, 2020, 266, 118650. 26 Li S, Wang C, Cai M, et al. Journal of Colloid and Interface Science, 2022, 624, 219. 27 Tan L, Yuan B, Lou Y, et al. Journal of Alloys and Compounds, 2023, 945, 169233. 28 Pan J, Mo C, Xu X, et al. Applied Chemical Industry, 2022, 51(4), 923(in Chinese) 潘杰, 莫创荣, 许雪棠, 等, 应用化工, 2022, 51(4), 923. 29 Zhao Y F, Mao Q Y, Zhai X Y, et al. Progress in Chemisty, 2021, 33(8), 1331(in Chinese) 赵依凡, 毛琦云, 翟晓雅, 等, 化学进展, 2021, 33(8), 1331. 30 Xie Y Y, Shang X T, Liu D, et al. Applied Catalysis B:Environmental, 2019, 259, 118087. 31 Zhang Z, Zou C T, Yang S J. Progress in Chemistry, 2020, 32, 1427(in Chinese). 张志, 邹晨涛, 杨水金, 等. 化学进展, 2020, 32, 1427. 32 Li H, Li K, Wang H. Materials Chemistry and Physics, 2009, 1161, 134. 33 Kumar R, Sudhaik A, Raizada P, et al. Journal of Environmental Chemical Engineering, 2020, 85, 104483. 34 Cheng L, Liu L, Wang D, et al. Journal of CO2 Utilization, 2019, 29, 196. 35 Shimodaira Y, Kato H, Kobayashi H, et al. The Journal of Physical Chemistry B, 2006, 11036, 17790. 36 Zhou L, Wang W, Zhang L. Journal of Molecular Catalysis A: Chemical, 2007, 2681-2, 195. 37 Stelo F, Kublik N, Ullah S, et al. Journal of Alloys and Compounds, 2020, 829, 154591. 38 Zhang L, Li Y, Li Q, et al. Chemical Engineering Journal, 2021, 419, 129484. 39 Hassan J Z, Raza A, Qumar U, et al. Sustainable Materials and Technologies, 2022, 33, e00478. 40 Abazari R, Mahjoub A R, Shariati J, et al. Journal of Cleaner Production, 2019, 221, 582. 41 Zhang G X, Xu H R, Hu J M, Advanced Powder Technology, 2021, 3211, 4384. 42 Zhang Y, Zhao Y, Xiong Z, et al. Journal of Colloid and Interface Science, 2022, 607, 1864. 43 Yang G, Liang Y J, Li K, et al. Journal of Alloys and Compounds, 2020, 844, 156231. 44 Shukla B K, Rawat S, Gautam M K, et al. Molecules, 2022, 277, 2309. 45 Wen X, Jiang X, Jin T, et al. Energy & Fuels, 2022, 3619, 11485. 46 Umapathy V, Manikandan A, Arul Antony S, et al. Transactions of Nonferrous Metals Society of China, 2015, 2510, 3271. 47 Beale A M, Le M T, Hoste S, et al. Solid State Sciences, 2005, 710, 1141. 48 Subhiksha V, Kokilavani S, Sudheer K S, Chemosphere, 2022, 290, 133228. 49 Zhu Y N, Mu J J, Zheng G H, et al. Ceramics International, 2016, 4215, 17347. 50 Zhang J, Wang Y, Wang Y, et al. Environmental Science: Nano, 2022, 98, 2979. 51 Zhang Z, Zeng X, Wen L, et al. Fuel, 2023, 331, 125900. 52 Shen H, Fu F, Xue W, et al. Journal of Colloid and Interface Science, 2021, 599, 741. 53 Hu T, Li H, Liang Z, et al. Journal of Colloid and Interface Science, 2019, 545, 301. 54 Zhang L, Xu T, Zhao X, et al. Applied Catalysis B: Environmental, 2010, 983, 138. 55 Ma T, Jin S, Kong X, et al. Applied Surface Science, 2021, 548, 149244. 56 Qiu Y, Lu J, Yan Y, et al. Surfaces and Interfaces, 2022, 31, 102009. 57 Xie J, Cao Y, Hu J, et al. Green Chemistry, 2020, 224, 1424. 58 Tian G, Chen Y, Zhou W, et al. Journal of Materials Chemistry, 2011, 213, 887. 59 Deng Q. Preparation of bismuth molybdate based photocatalyst and its performance in reducing Cr(Ⅵ). Master’s Thesis, Donghua University, China, 2022(in Chinese). 邓强. 钼酸铋基光催化剂的制备及其还原Cr(Ⅵ)性能研究. 硕士学位论文, 东华大学, 2022. 60 Chen S. Preparation and photocalytic activity of modified bismuth tungstate. Master’s Thesis, University of Science and Technology Liaoning, China, 2021(in Chinese). 陈姝仪. 改性钨酸铋的制备及其光催化性能的研究. 硕士学位论文, 辽宁科技大学, 2021. 61 Bai J, Li X, Hao Z, et al. Journal of Colloid and Interface Science, 2020, 560, 510. 62 Shen H D, Fu F, Xue W W, et al. Journal of Colloid and Interface Science, 2021, 599, 741. 63 Zhao D, Cai C. Inorganic Chemistry Frontiers, 2020, 715, 2799. 64 Li Z Q, Chen X T, Xue Z L. CrystEngComm, 2013, 153, 498. 65 Sun Q, Zhao Y, Zhang J, et al. Chemosphere, 2022, 302, 134807. 66 Sun J, Shen C H, Guo J, et al. Journal of Colloid and Interface Science, 2021, 588, 19. 67 Hao Y. The perpration and photocalytic performance of novel Bi2MoO6-based hybrid photocatalyst. Master’s Thesis, Dalian Polytechnic University, China, 2017(in Chinese). 郝宇晨. 新型铋系光催化剂及其复合材料的制备及性能研究. 硕士学位论文, 大连工业大学, 2017. 68 Guo F, Chen Z, Huang X, et al. Separation and Purification Technology, 2021, 275, 119223. 69 Kumari N, Chhabra T, Kumar A, et al. Materials Letters, 2021, 302, 130455. 70 Wang D, Dong X, Lei Y, et al. Catalysis Science & Technology, 2022, 1218, 5709. 71 Mao Y, Qiu B, Zhang M, et al. Solar Energy, 2020, 207, 832. 72 Liu Y, Zhao S, Zhang C, et al. Carbon, 2021, 182, 287. 73 Jia Q, Nguyen P K, Gu Z, et al. Journal of Alloys and Compounds, 2021, 863, 158336. 74 Wu X, Zhang Q, Su C. FlatChem, 2021, 27, 100244. 75 Gong Y X, Wang J B, Chai B Y, et al. Chemical Journal of Higher Education, 2022, 43(6), 20220005(in Chinese). 龚妍熹, 王建兵, 柴歩瑜, 等. 高等学校化学学报, 2022, 43(6), 20220005. 76 Jiang S. Preparation of metal-organic framework/inorganic semiconductor composites and its catalytic degradation of diclofenac sodium under visible light. Master’s Thesis, South-Central University for Nationalities, China, 2020(in Chinese). 蒋实.金属有机骨架/无机半导体复合材料的制备及其可见光下催化降解双氯芬酸钠的研究.硕士学位论文,中南民族大学,2020. |
|
|
|