INORGANIC MATERIALS AND CERAMIC MATRIX COMPOSITES |
|
|
|
|
|
Research Progress of High Performance Strain Sensors Based on Carbon Nanotubes and Their Composite |
ZHANG Yongfang1, WEN Jingqian1, DONG Lihong2,*, WANG Haidou3,*, GUO Weiling2, HUANG Yanfei2
|
1 School of Printing, Packaging and Digital Media, Xi'an University of Technology, Xi'an 710054, China 2 National Key Laboratory for Remanufacturing, Army Academy of Armored Forces, Beijing 100072, China 3 National Engineering Research Center for Remanufacturing, Army Academy of Armored Forces, Beijing 100072, China |
|
|
Abstract Piezoresistive strain sensors are often used to monitor structural deformation by converting captured mechanicalsignals into electrical ones. Considering the structure and practical application of the monitoring object, the piezoresistive strain sensor needs to have certain flexibility, so as to realize the strain monitoring of the bending or tensile interface, in order to prepare a strain sensor with high strain sensitivity, strong durability, non-easy damage and good performance after enduring many cycles of load, in recent years, the sensing materials used in the conductive layer are the research hotspot. Carbon nanotubes (CNTs) have special properties and can be enhanced by doping with metal conductive materials such as silver, copper or carbon black in carbon conductive materials, therefore, it has great potential in the preparation of high-performance flexible strain sensors. In this paper, the research status of flexible strain sensors made of carbon nanotubes and their composites in order to improve the strain sensing performance is reviewed, the related strain sensing mechanism and the applications of carbon nanotube-based strain sensors in various fields are introduced, and the challenges faced by carbon nanotube-based flexible strain sensors are discussed.
|
Published: 25 July 2024
Online: 2024-08-12
|
|
Fund:National Key Project (2021-JCJQ-ZD-302),and the National Natural Science Foundation of China (52175206, 52130509). |
|
|
1 Shintake J, Cacucciolo V, Floreano D, et al. Advanced Materials, 2018, 30(29), 1707035. 2 Li T, Li Y, Zhang T. Accounts of Chemical Research, 2019, 52(2), 288. 3 Souri H, Banerjee H, Jusufi A, et al. Advanced Intelligent Systems, 2020, 2(8), 2000039. 4 Meng K, Xiao X, Wei W, et al. Advanced Materials, 2022, 34(21), 2109357. 5 Abramson A, Chan C T, Khan Y, et al. Science Advances, 2022, 8(37), eabn6550. 6 Yang J C, Mun J, Kwon S Y, et al. Advanced Materials, 2019, 31(48), 1904765. 7 Shih B, Shah D, Li J, et al. Science Robotics, 2020, 5(41), eaaz9239. 8 Gao K, Zhang Z, Weng S, et al. Applied Sciences, 2022, 12(19), 9750. 9 Souri H, Banerjee H, Jusufi A, et al. Advanced Intelligent Systems, 2020, 2(8), 2000039. 10 Ji Zhe, Liu Xidie, Lyu Shurui, et al. Journal of China Papermaking, 2021, 40 (12), 97(in Chinese). 吉喆, 刘玺蝶, 吕姝叡, 等. 中国造纸, 2021, 40(12), 97. 11 Chen J, Zheng J, Gao Q, et al. Applied Sciences, 2018, 8(3), 345. 12 Madhavan R. Journal of Materials Science: Materials in Electronics, 2022, 33(7), 3465. 13 Li Q, Luo S, Wang Y, et al. Sensors and Actuators A: Physical, 2019, 300, 111664. 14 Zhang X, Xiang D, Zhu W, et al. Composites Science and Technology, 2020, 200, 108437. 15 Soe H M, Manaf A A, Matsuda A, et al. Journal of Materials Science: Materials in Electronics, 2020, 31(14), 11897. 16 Wang L, Chen Y, Lin L, et al. Chemical Engineering Journal, 2019, 362, 89. 17 Zhao S, Li J, Cao D, et al. ACS Applied Materials & Interfaces, 2017, 9(14), 12147. 18 Sun S, Guo L, Chang X, et al. Journal of Materials Science, 2019, 54(9), 7048. 19 Arun H. AEU-International Journal of Electronics and Communications, 2021, 136, 153753. 20 Xiang D, Zhang X, Harkin-Jones E, et al. Composites Part A: Applied Science and Manufacturing, 2020, 129, 105730. 21 Haghgoo M, Ansari R, Hassanzadeh-Aghdam M K. The European Physical Journal Plus, 2021, 136(7), 1. 22 Kang I, Schulz M J, Kim J H, et al. Smart Materials and Structures, 2006, 15(3), 737. 23 Kao H L, Cho C L, Chang L C, et al. Coatings, 2020, 10(8), 792. 24 Wang R, Sun L, Zhu X, et al. Advanced Materials Technologies, 2023, 8(1), 2200855. 25 Shi J, Li X, Cheng H, et al. Advanced Functional Materials, 2016, 26(13), 2078. 26 Mampallil D, Eral H B. Advances in Colloid and Interface Science, 2018, 252, 38. 27 Chen C B, Kao H L, Chang L C, et al. ECS Journal of Solid State Science and Technology, 2021, 10(12), 121001. 28 Ghavidel A K, Zadshakoyan M, Kiani G, et al. Optics and Lasers in Engineering, 2023, 161, 107325. 29 Ryu C, Park J, Jung S I, et al. Chemosensors, 2022, 10(5), 187. 30 Lee J, Pyo S, Kwon D S, et al. Small, 2019, 15(12), 1805120. 31 Zhou X, Luo J, Zhang J, et al. Nanotechnology Reviews, 2022, 11(1), 2050. 32 Kang B H, Jeong I Y, Park S H. Polymers, 2022, 14(13), 2551. 33 Suk M E. Molecules, 2021, 26(13), 3947. 34 Hu N, Karube Y, Arai M, et al. Carbon, 2010, 48(3), 680. 35 Tran Hoang P, Salazar N, Porkka T N, et al. Nanoscale Research Letters, 2016, 11(1), 1. 36 Zhang Q, Liu L, Zhao D, et al. Nanomaterials, 2017, 7(12), 424. 37 Pei Z, Liu Y, Zhang Q, et al. Advanced Electronic Materials, 2019, 5(7), 1900227. 38 Karimov K S, Chani M T S, Khalid F A, et al. Physica E: Low-dimensional Systems and Nanostructures, 2012, 44(4), 778. 39 Zhao D, Zhang Q, Liu Y, et al. Applied Nanoscience, 2019, 9(7), 1469. 40 Li Xinyan. Iron nanowire based flexible structure and performance study of tensile strain sensor. Master's Thesis, Chongqing University of Posts and Telecommunications, 2020 (in Chinese). 李欣晏. 基于铁纳米线的柔性拉伸应变传感器的构筑及性能研究. 硕士学位论文, 重庆邮电大学, 2020. 41 Jang D, Yoon H N, Nam I W, et al. Composite Structures, 2020, 244, 112260. 42 Zhang Y, Sheehan C J, Zhai J, et al. Advanced Materials, 2010, 22(28), 3027. 43 Park S, Ruoff R S. Nature Nanotechnology, 2009, 4(4), 217. 44 Li Y, Ai Q, Mao L, et al. Scientific Reports, 2021, 11(1), 1. 45 Xiang D, Zhang X, Han Z, et al. Journal of Materials Science, 2020, 55(33), 15769. 46 Zheng Y, Li Y, Dai K, et al. Composites Science and Technology, 2018, 156, 276. 47 Go M, Qi X, Matteini P, et al. Sensors and Actuators A: Physical, 2021, 332, 113098. 48 Huang L, Chen J, Xu Y, et al. Applied Surface Science, 2021, 548, 149268. 49 Yin F, Ye D, Zhu C, et al. Sensors, 2017, 17(11), 2677. 50 Liu S L, Feng H X, Zhang J Q, et al. Journal of Applied Chemical Industry, 2010, 39(7), 1074(in Chinese). 刘生丽, 冯辉霞, 张建强, 等. 应用化工, 2010, 39(7), 1074. 51 Huang Yun. Journal of Functional Polymer, 1989, 2 (1), 73(in Chinese). 黄畇. 功能高分子学报, 1989, 2(1), 73. 52 Miao Y, Yang Q, Chen L, et al. Applied Physics Letters, 2012, 101(6), 063120. 53 Gong S, Zhu Z H, Li J, et al. Journal of Applied Physics, 2014, 116(19), 194306. 54 Li J, Ma P C, Chow W S, et al. Advanced Functional Materials, 2007, 17(16), 3207. 55 Rittigstein P, Torkelson J M. Journal of Polymer Science Part B: Polymer Physics, 2006, 44(20), 2935. 56 Zare Y, Rhee K Y. Polymers, 2020, 12(1), 114. 57 Zare Y, Rhee K Y. Composites Science and Technology, 2018, 155, 252. 58 Hu N, Karube Y, Yan C, et al. Acta Materialia, 2008, 56(13), 2929. 59 Zare Y, Rhee K Y. Journal of Materials Science, 2020, 55(13), 5471. 60 Zhou P, Yao J, Wei C, et al. Bioinspiration & Biomimetics, 2022, 17(4), 046016. 61 Hu X, Yang F, Wu M, et al. Advanced Materials Technologies, 2022, 7(3), 2100769. 62 Mousavi S, Howard D, Zhang F, et al. ACS Applied Materials & Interfaces, 2020, 12(13), 15631. 63 Wang Y, Qin W, Hu X, et al. Sensors and Actuators B: Chemical, 2022, 368,132228. 64 Goldoni R, Ozkan-Aydin Y, Kim Y S, et al. ACS Applied Materials & Interfaces, 2020, 12(39), 43388. 65 Caizzone S, DiGiampaolo E. IEEE Sensors Journal, 2015, 15(12), 6767. 66 Zerbst U, Madia M, Klinger C, et al. Engineering Failure Analysis, 2019, 97, 759. 67 Liu C, Teng J, Wu N. Shock and Vibration, 2015, 2015(1),740471. 68 Wang Zongpeng, Luan Yunfei, Li Xin. Sichuan Cement, 2023(1), 31. (in Chinese) 王宗鹏,栾云斐,李鑫. 四川水泥,2023(1),31. 69 Ferreira P M, Machado M A, Carvalho M S, et al. Sensors, 2022, 22(21), 8320. 70 Saafi M. Nanotechnology, 2009, 20(39), 395502. 71 Xin X, Qiu Z, Luan X, et al. IEEE Sensors Journal, 2022, 22(5), 3945. 72 Castañeda-Saldarriaga D L, Alvarez-Montoya J, Martínez-Tejada V, et al. International Journal of Concrete Structures and Materials, 2021, 15(1), 1. 73 Rao R K, Sasmal S. Sensors and Actuators A: Physical, 2020, 311, 112088. 74 Dey S, Bhattacharyya R, Sarma S E, et al. IEEE Internet of Things Journal, 2020, 8(5), 3955. 75 Li J, Feng G, Wei W, et al. IEEE Internet of Things Journal, 2018, 5(6), 4632. 76 Benchirouf A, Sowade E, Al-Hamry A, et al.In: International Multi-Conference on Systems, Signals & Devices. Chemnitz, Germany, 2012, pp. 1. 77 Min S H, Kim H J, Quan Y J, et al. Sensors and Actuators A: Physical, 2020, 313, 112224. 78 Michelis F, Bodelot L, Laheurte J M, et al.In: Nanotechnology in Construction. Germany, 2015,pp.389. 79 Du J, Wang L, Shi Y, et al. Sensors, 2020, 20(16), 4523. 80 Kim K, Lee J, Jo E, et al. ACS Applied Nano Materials, 2020, 3(11), 11408. 81 Wang L, Dou W, Chen J, et al. Materials Science and Engineering: C, 2020, 117, 111345. 82 Vilkomerson D, Chilipka T. In: IEEE Ultrasonics Symposium. Montreal. QC, Canada, 2004, pp. 461. 83 Santos A, Amorim L, Nunes J P, et al. Sensors and Actuators A: Physical, 2019, 289, 157. |
|
|
|