INORGANIC MATERIALS AND CERAMIC MATRIX COMPOSITES |
|
|
|
|
|
Research Progress of High-entropy Materials for Lithium/Sodium Ions Batteries |
WANG Peiyuan1, DENG Gencheng1, ZHU Denggui1, LI Yonghao1, SUN Shumin1,*, FANG Shaoming1,2,*
|
1 College of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China 2 Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry, Zhengzhou 450001, China |
|
|
Abstract High-entropy materials(HEMs) including high-entropy alloys(HEAs), high-entropy oxides(HEOs), and other high-entropy compounds are new multi-principal materials composed of various elements with equal or nearly equal molar ratio. HEMs, with their unique crystal structure characteristics, exhibit many different organizational and performance characteristics from conventional materials, have become one of the important research hotspots in the international materials academia. They have also attracted great attention in the field of new energy and related fields. The concept and development process of high entropy materials were first introduced. This article reviews the research progress of high-entropy metal oxides, high-entropy Prussian blue analogues, and high-entropy phosphates in the cathode materials of lithium-ion batteries and sodium ion batteries. It also reviews the research progress of high-entropy metal oxides, high-entropy metal sulfides, high-entropy alloys, and high-entropy MXene in the anode materials of lithium-ion batteries and sodium ion batteries, as well as the research progress of disordered rock-salt materials, high-entropy lithium garnet, and high-entropy oxide ceramic powders in solid electrolytes. Finally, the future research trends of high entropy materials in lithium-ion batteries and sodium ion batteries were prospected, providing new ideas for the research and development of new energy materials.
|
Published: 25 November 2024
Online: 2024-11-22
|
|
Fund:National Natural Science Foundation of China(52272243),Henan Province Key R & D and Promotion Project(Science and Technology Research)(221111240600,222102240030),Natural Science Foundation of Henan Province(222300420581). |
|
|
1 George E P, Raabe D, Ritchie R O. Nature Reviews Materials, 2019, 4(8), 515. 2 Oses C, Toher C, Curtarolo S. Nature Reviews Materials, 2020, 5(4), 295. 3 Yeh J W, Chen S K, Lin S J, et al. Advanced Engineering Materials, 2004, 6(5), 299. 4 Rost C M, Sachet E, Borman T, et al. Nature Communications, 2015, 6(1), 8485. 5 Jiang B, Yu Y, Cui J, et al. Science, 2021, 371(6531), 830. 6 Tang L, Li Z, Chen K, et al. Journal of the American Ceramic Society, 2021, 104(5), 1953. 7 Miracle D B, Senkov O N. Acta Materialia, 2017, 122, 448. 8 Ding Q, Zhang Y, Chen X, et al. Nature, 2019, 574(7777), 223. 9 Dornheim M, Doppiu S, Barkhordarian G, et al. Scripta Materialia, 2007, 56(10), 841. 10 Chen Y, Fu H, Huang Y, et al. ACS Materials Letters, 2021, 3(2), 160. 11 Ma Y, Ma Y, Wang Q, et al. Energy & Environmental Science, 2021, 14(5), 2883. 12 Qiu N, Chen H, Yang Z, et al. Journal of Alloys and Compounds, 2019, 777, 767. 13 Zhai S, Rojas J, Ahlborg N, et al. Energy & Environmental Science, 2018, 11(8), 2172. 14 Ma Y, Hu Y, Pramudya Y, et al. Advanced Functional Materials, 2022, 32(34), 2202372. 15 Zhao C, Ding F, Lu Y, et al. Angewandte Chemie-International Edition, 2020, 59(1), 264. 16 Tian K, He H, Li X, et al. Journal of Materials Chemistry A, 2022, 10(28), 14943. 17 Yao L, Zou P, Wang C, et al. Advanced Energy Materials, 2022, 12(41), 2201989. 18 Ma Y, Ma Y, Dreyer S L, et al. Advanced Materials, 2021, 33(34), 2101342. 19 Peng J, Zhang B, Hua W, et al. Angewandte Chemie-International Edition 2023, 62(6), e202215865. 20 Luo Y X. Preparation, performance and ion transport calculation of electrode materials for phosphate batteries. Master's Thesis, Ningbo University, China, 2020(in Chinese). 骆艳香. 磷酸盐电池电极材料的制备、性能及离子输运计算. 硕士学位论文, 宁波大学, 2020. 21 Gu Z Y, Guo J Z, Cao J M, et al. Advanced Materials, 2022, 34(14), 2110108. 22 Wu B, Hou G, Kovalska E, et al. Inorganic Chemistry, 2022, 61(9), 4092. 23 Li H, Xu M, Long H, et al. Advanced Science, 2022, 9(25), 2202082. 24 Sarkar A, Velasco L, Wang D, et al. Nature Communications, 2018, 9, 3400. 25 Wang Q, Sarkar A, Li Z, et al. Electrochemistry Communications, 2019, 100, 121. 26 Wang D, Jiang S, Duan C, et al. Journal of Alloys and Compounds, 2020, 844, 156158. 27 Xiang H Z, Xie H X, Li W C, et al. Chemical Journal of Chinese Universities, 2020, 41(8), 1801(in Chinese). 项厚政, 谢鸿翔, 李文超, 等. 高等学校化学学报, 2020, 41(8), 1801. 28 Xiao B, Wu G, Wang T, et al. Ceramics International, 2021, 47(24), 33972. 29 Zhao J, Zhang Y, Chen X, et al. Advanced Functional Materials, 2022, 32(45), 2206531. 30 Edalati P, Mohammadi A, Li Y, et al. Scripta Materialia, 2022, 209, 114387. 31 Etman A S, Zhou J, Rosen J. Electrochemistry Communications, 2022, 137, 107264. 32 Gao Z, Sun H, Fu L, et al. Advanced Materials, 2018, 30(17), 1705702. 33 Zeng Y, Ouyang B, Liu J, et al. Science(New York, N. Y. ), 2022, 378(6626), 1320. 34 Zhang Q, Arnold W, Hood Z D, et al. ACS Applied Energy Materials, 2021, 4(8), 7674. 35 Fu Z, Ferguson J. Journal of the American Ceramic Society, 2022, 105(10), 6175. 36 Su Y, Rong X, Li H, et al. Advanced Materials, 2022, 35(1), 2209402. 37 Liu W, Jiang J, Yang Z, et al. Chemistry-an Asian Journal, 2022, 17(22), e202200839. 38 Zhao H S, Qi Y L, Ren Y R. Materials Reports, 2023, 37(3), 21030187(in Chinese). 赵宏顺, 戚燕俐, 任玉荣. 材料导报, 2023, 37(3), 21030187. |
|
|
|