METALS AND METAL MATRIX COMPOSITES |
|
|
|
|
|
Research Status of Preparation Methods and Anticorrosive Application of Aluminum Alloy Superhydrophobic Surfaces |
LI Xuewu*, DU Shaomeng, YAN Jiayang, SHI Tian
|
School of Mechanical Engineering, Xi'an University of Science and Technology, Xi'an 710054, China |
|
|
Abstract Inspired by the superhydrophobic phenomenon represented by the ‘lotus leaf effect', the technology of superhydrophobic material preparation has been developing rapidly for decades. Aluminum alloy has good casting and plastic processing properties, and is one of the most widely used materials in industrial applications. The performance of aluminum alloy surfaces in specific fields, such as marine and aviation, has higher requirements, and superhydrophobic surfaces have excellent characteristics such as corrosion resistance, self-cleaning ability, frost resistance. Therefore, it is of practical significance to construct superhydrophobic surfaces for aluminum alloys to further improve their corrosion resistance. In this paper, the classical theory of wettability is first reviewed, then the process of preparing the superhydrophobic surface of aluminum alloy is briefly introduced, then many methods of preparing the superhydrophobic surface of aluminum alloy are summarized and reviewed, including etching, electrodeposition, oxidation, and hydrothermal methods, etc. On this basis, the corrosion resistance mechanism of the superhydrophobic surface of aluminum alloy and its application in the field of corrosion resistance are discussed and studied, and the superhydrophobic surface of aluminum alloy is proposed. Finally, the practical problems faced by aluminum alloy superhydrophobic surfaces from experimental research to practical production applications are proposed, and systematic suggestions and prospects are proposed.
|
Published: 10 October 2024
Online: 2024-10-23
|
|
Fund:National Natural Science Foundation of China (52275211), Innovation Capability Support Program of Shaanxi (2021KJXX-38), China Postdoctoral Science Foundation Project(2021M693883). |
|
|
1 Zheng B Y, Di Y L, Wang H D, et al. Materials Reports, 2020, 34(23), 23109 (in Chinese). 郑博源, 底月兰, 王海斗, 等. 材料导报, 2020, 34(23), 23109. 2 Cao Y J, Wang C, Wang L Q. Materials Reports, 2020, 34(3), 184 (in Chinese). 曹颐戬, 王聪, 王丽琴. 材料导报, 2020, 34(3), 184. 3 Li X W. Preparation and performance research of micro-nano structures on 5052 Al alloy surface. Ph. D. Thesis, Wuhan University of Technology, China, 2017 (in Chinese). 李雪伍. 5052铝合金表面微纳结构的制备与性能研究. 博士学位论文, 武汉理工大学, 2017. 4 Ma L, Zhao H, Gui Y N, et al. Materials Reports, 2021, 35(S1), 414 (in Chinese). 马力, 赵赫, 昝宇宁, 等. 材料导报, 2021, 35(S1), 414. 5 Wang H F, Yang B Q, Liu G, et al. Materials Reports, 2018, 32(S1), 395 (in Chinese). 王惠芬, 杨碧琦, 刘刚. 材料导报, 2018, 32(S1), 395. 6 Zhang B, Xu W, Zhu Q, et al. Materials, 2019, 12(10), 1592. 7 Jia C, Zhu J, Zhang L. Materials, 2022, 15(5), 1939. 8 Saji V S. Journal of Adhesion Science and Technology, 2022, 37(2), 137. 9 Zhao M R, Zhou H Y, Kang W Q, et al. Acta Materiae Compositae Sinica, 2021, 38(2), 361 (in Chinese). 赵美蓉, 周惠言, 康文倩, 等. 复合材料学报, 2021, 38(2), 361. 10 Young T. Philosophical Transactions of the Royal Society of London, 1805 (95), 65. 11 Wenzel R N. Industrial & Engineering Chemistry, 1936, 28(8), 988. 12 Cassie A B D, Baxter S. Transactions of the Faraday Society, 1944, 40, 546. 13 Barthlott W, Neinhuis C. Planta, 1997, 202(1), 1. 14 Liu J, Fang X, Zhu C, et al. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 607, 125498. 15 Li X W, Wang H X, Shi T, et al. Rare Metal Materials and Engineering, 2022, 51(1), 6. 16 Pan G, Huang Q G, Hu H B, et al. Materials Reports, 2009, 23(21), 64 (in Chinese). 潘光, 黄桥高, 胡海豹, 等. 材料导报, 2009, 23(21), 64. 17 Xu N, Sarkar D K, Chen X G, et al. Surface and Coatings Technology, 2016, 302, 173. 18 Xu N, Sarkar D K, Chen X G, et al. RSC Advances, 2016, 6(42), 35466. 19 Ge-Zhang S, Yang H, Ni H, et al. Frontiers in Bioengineering and Biotechnology, 2022, 10, 958095. 20 Sun R, Zhao J, Li Z, et al. Progress in Organic Coatings, 2020, 147, 105745. 21 Cui C, Cao Y, Qi B, et al. Langmuir, 2021, 37(25), 7810. 22 Peng H, Li L, Wang Q, et al. Journal of Coatings Technology and Research, 2021, 18(3), 861. 23 Liu M, Li M T, Xu S, et al. Frontiers in Chemistry, 2020, 8, 835. 24 Lian Z, Xu J, Yu Z, et al. Journal of Alloys and Compounds, 2019, 793, 326. 25 Lian Z, Xu J, Yu P, et al. Metals and Materials International, 2020, 26(11), 1603. 26 Tong W, Cui L, Qiu R, et al. Journal of Materials Science & Technology, 2021, 89, 59. 27 Xin G, Wu C, Liu W, et al. Journal of Alloys and Compounds, 2021, 881, 160649. 28 Guo Y, Zhang X, Wang X, et al. Journal of Materials Science, 2020, 55(25), 11658. 29 Ijaola A O, Bamidele E A, Akisin C J, et al. Surfaces and Interfaces, 2020, 21, 100802. 30 Volpe A, Gaudiuso C, Ancona A. Materials, 2020, 13(24), 5692. 31 Liu J, Fang X, Zhu C, et al. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 607, 125498. 32 Zhao Q, Tang T, Wang F. Coatings, 2018, 8(11), 390. 33 Zhang D, Li L, Wu Y, et al. Applied Surface Science, 2019, 473, 493. 34 Zhao Y, Xu J B, Zhan J, et al. Applied Surface Science, 2020, 508, 145242. 35 Li X, Yin S, Luo H. Vacuum, 2020, 181, 109674. 36 He Z, Zeng Y, Zhou M, et al. Langmuir, 2020, 37(1), 524. 37 Saji V S. Advances in Colloid and Interface Science, 2020, 283, 102245. 38 Zhang X, Wang R, Long F, et al. Corrosion Science, 2021, 193, 109889. 39 Li L, Li T, Zhang Z, et al. Journal of Coatings Technology and Research, 2022, 19(5), 1449. 40 Huang J, Zhao D, Gong Y, et al. Surface and Coatings Technology, 2022, 441, 128566. 41 Yu P H, Zuo Y, Zhu X B, et al. Rare Metals, 2019 , 43(1), 67 (in Chinese). 于佩航, 左佑, 朱鑫彬, 等. 稀有金属, 2019, 43(1), 67. 42 Egorkin V S, Mashtalyar D V, Gnedenkov A S, et al. Polymers, 2021, 13(21), 3827. 43 Saji V S. Journal of Adhesion Science and Technology, 2023, 37(2), 137. 44 Bi P, Li H, Zhao G, et al. Coatings, 2019, 9(7), 452. 45 Jin Q, Tian G, Li J, et al. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 577, 8. 46 Chen X H, Chen M J, Min Y L, et al. Electrochemistry, 2018, 24(1), 28 (in Chinese). 陈晓航, 陈寞静, 闵宇霖, 等. 电化学, 2018, 24(1), 28. 47 Zhu G, Zhao Y, Liu L, et al. Journal of Materials Science, 2021, 56(26), 14803. 48 Peng H, Yang H, Ma X, et al. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 643, 128800. 49 Tuo Y J, Chen W P, Zhang H F, et al. Applied Surface Science, 2018, 46, 230. 50 Feng L, Zhang H, Wang Z, et al. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 441, 319. 51 Zhang Z, Xue F, Bai W, et al. Surface and Coatings Technology, 2021, 410, 126952. 52 Calabrese L, Khaskhoussi A, Patane S, et al. Coatings, 2019, 9(6), 352. 53 Li L, Lin Y, Rabbi K F, et al. ACS Applied Materials & Interfaces, 2021, 13(36), 43489. 54 Shi T, Guo X Z, Yang H. Rare Metal Materials and Engineering, 2008, 37(s2), 73 (in Chinese). 石涛, 郭兴忠, 杨辉. 稀有金属材料与工程, 2008, 37(s2), 73. 55 Wang Z L, Li X Y, Song H P, et al. Materials Sciences and Technology, 2023, 31(2), 83(in Chinese). 王兆林, 李香云, 宋海鹏, 等. 材料科学与工艺, 2023, 31(2), 83. 56 Rivero P J, Rosagaray I, Fuertes J P, et al. Polymers, 2020, 12(9), 2086. 57 Rivero P J, Iribarren A, Larumbe S, et al. Coatings, 2019, 9(6), 367. 58 Iribarren A, Rivero P J, Berlanga C, et al. Coatings, 2019, 9(4), 216. 59 Ellinas K, Dimitrakellis P, Sarkiris P, et al. Processes, 2021, 9(4), 666. 60 Lee J W, Hwang W. Materials Letters, 2016, 168, 83. 61 Zhu G, Liu E, Liu L, et al. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 634, 127977. 62 Kozhukhova A E, Du Preez S P, Bessarabov D G. Surface and Coatings Technology, 2020, 383, 125234. 63 Hou R H, Wang H, Chen J, et al. Chemical Industry and Engineering Progress, 2016, 35(8), 2523 (in Chinese). 侯蕊红, 王皓, 陈津, 等. 化工进展, 2016, 35(8), 2523. 64 Li J, Liu J, Cao Y, et al. Materials Chemistry and Physics, 2022, 287, 126313. 65 Du X Q, Liu Y W, Chen Y. Applied Physics A, 2021, 127(8), 1. 66 Li X W, Yan J Y, Yu T, et al. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 642, 128701. 67 Oh J W, Jung J Y, Song K, et al. Journal of Mechanical Science and Technology, 2019, 33(8), 3971. 68 Zhang X, Gong A, Zheng Y, et al. Physica Status Solidi A-Applications and Materials Science, 2022, 219(22), 2200301. 69 Wen Y, Li J, Wang Q, et al. Advanced Materials Interfaces, 2021, 8(14), 2100383. 70 Li J, Li J, Liu Y, et al. Advanced Engineering Materials, 2021, 23(6), 2001540. 71 Xia X J, Cai J B, Lin D Y, et al. Natural Science of Hunan Normal University, 2020, 43(5), 57 (in Chinese). 夏晓健, 蔡建宾, 林德源, 等. 湖南师范大学自然科学学报, 2020, 43(5), 57. 72 Shi T, Li X W, Zhang C W, et al. Materials and Corrosion, 2021, 72(5), 904. 73 An L T, Pei D M, Sun C Q, et al. Pearl River Water Transport, 2020(10), 5 (in Chinese). 安连彤, 裴冬梅, 孙成琪, 等. 珠江水运, 2020(10), 5. 74 Hu Y G, Dong R F, Zhang X Y, et al. Jiangxi Metallurgy, 2023, 43(1), 39(in Chinese). 胡永刚, 董瑞峰, 张肖雨, 等. 江西冶金, 2023, 43(1), 39. 75 Wei D, Wang J, Wang H, et al. Applied Surface Science, 2019, 483, 1017. 76 Tong W, Karthik N, Li J, et al. Langmuir, 2019, 35(47), 15078. |
|
|
|