INORGANIC MATERIALS AND CERAMIC MATRIX COMPOSITES |
|
|
|
|
|
Study on Catalytic Mechanism of Hybrid Electrolyte Lithium-Air Battery Based on V2C Catalyst |
SHENG Jianping, YU Mingfu, LI Jie, SUN Hong*
|
School of Mechanical Engineering, Shenyang Jianzhu University, Shenyang 110168, China |
|
|
Abstract The improved catalytic activity of oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) can significantly improve the performance of hybrid electrolyte lithium-air batteries. The two-dimensional material V2C (MXenes) has attracted much attention due to its rich composition, high specific surface area, and strong stability. Based on the first principles approach of density functional theory (DFT), this work investigated the electronic properties of V2C, the optimal adsorption sites of oxygen on the V2C surface under alkaline conditions, and the redox process of oxygen on the V2C surface, calculated the free energy and overpotential, and finally compared it with the MnO2 catalyst commonly used in hybrid electrolyte lithium-air batteries. The results showed that V2C has a lower overpotential than the commonly used MnO2 catalyst when used as a catalyst for hybrid electrolyte Li-air batteries, indicated that the catalyst can improve the catalytic performance of the electrode and was a promising bifunctional catalyst for ORR and OER.
|
Published: 25 May 2024
Online: 2024-05-28
|
|
Fund:National Natural Science Foundation of China (51176131,51906166), Liaoning Revitalization Talents Program (XLYC1802045), Liaoning Provincial Education Department Project (lnqn202007). |
|
|
1 Herfurth H J. Industrial Laser Solutions, 2009, 24(5), 13. 2 Kang J H, Lee J, Jung J W, et al. ACS Nano, 2020, 14(11), 14549. 3 Wang F, Liang C S, Xu D L, et al. Journal of Inorganic Materials, 2012, 27(12), 1233 (in Chinese). 王芳, 梁春生, 徐大亮, 等. 无机材料学报, 2012, 27(12), 1233. 4 Girishkumar G, McCloskey B, Luntz A C, et al. The Journal of Physical Chemistry Letters, 2010, 1(14), 2193. 5 Jung H G, Hassoun J, Park J B, et al. Nature Chemistry, 2012, 4(7), 579. 6 Rai V, Lee K P, Safanama D, et al. ACS Applied Energy Materials, 2020, 3(9), 9417. 7 Hale W, Choudhury P. Catalysts, 2022, 12(3), 260. 8 VahidMohammadi A, Rosen J, Gogotsi Y. Science, 2021, 372(6547), eabf1581. 9 Nan J, Guo X, Xiao J, et al. Small, 2021, 17(9), 1902085. 10 Yang X, Zhang X, Lu Z, et al. Physical Review Applied, 2021, 15(4), 044053. 11 Cheng F, Chen J. Chemical Society Reviews, 2012, 41(6), 2172. 12 Kimmel Y C, Xu X, Yu W, et al. ACS Catalysis, 2014, 4(5), 1558. 13 Li F, Ohnishi R, Yamada Y, et al. Chemical Communications, 2013, 49(12), 1175. 14 Mahne N, Fontaine O, Thotiyl M O, et al. Chemical Science, 2017, 8(10), 6716. 15 VahidMohammadi A, Mojtabavi M, Caffrey N M, et al. Advanced Materials, 2019, 31(8), 1806931. 16 He H, Xia Q, Wang B, et al. Chinese Chemical Letters, 2020, 31(4), 984. 17 Xie Y, Naguib M, Mochalin V N, et al. Journal of the American Chemical Society, 2014, 136(17), 6385. 18 Mashtalir O, Lukatskaya M R, Kolesnikov A I, et al. Nanoscale, 2016, 8(17), 9128. 19 Li L, Wei Z D, Li L L et al. Journal of Chemistry, 2006, 64(4), 287 (in Chinese). 李莉, 魏子栋, 李兰兰, 等. 化学学报, 2006, 64(4), 287. 20 Wang Y, He P, Zhou H. Energy & Environmental Science, 2011, 4(12), 4994. 21 He P, Zhang T, Jiang J, et al. The Journal of Physical Chemistry Letters, 2016, 7(7), 1267. 22 Manthiram A, Li L. Advanced Energy Materials, 2015, 5(4), 1401302. 23 Zheng J P, Andrei P, Hendrickson M, et al. Journal of the Electrochemical Society, 2010, 158(1), A43. 24 Wang Y, Zhou H. Journal of Power Sources, 2010, 195(1), 358. 25 Shan Q, Mu X, Alhabeb M, et al. Electrochemistry Communications, 2018, 96, 103. 26 Arya A, Carter E A. The Journal of Chemical Physics, 2003, 118(19), 8982. 27 Skúlason E, Karlberg G S, Rossmeisl J, et al. Physical Chemistry Chemical Physics, 2007, 9(25), 3241. 28 Radziuk D, Möhwald H. Physical Chemistry Chemical Physics, 2016, 18(1), 21. 29 Delley B. The Journal of Chemical Physics, 2000, 113(18), 7756. 30 Perdew J P, Burke K, Ernzerhof M. Physical Review Letters, 1996, 77(18), 3865. 31 Grimme S. Journal of Computational Chemistry, 2006, 27(15), 1787. 32 Yang X, Zhang Y, Fu Z, et al. ACS Applied Materials & Interfaces, 2020, 12(25), 28206. 33 Zhan C, Sun W, Kent P R C, et al. The Journal of Physical Chemistry C, 2018, 123(1), 315. 34 Kurtoglu M, Naguib M, Gogotsi Y, et al. Mrs Communications, 2012, 2, 133. 35 Sun D, Hu Q, Chen J, et al. ACS Applied Materials & Interfaces, 2016, 8(1), 74. 36 Hu J, Xu B, Ouyang C, et al. The Journal of Physical Chemistry C, 2014, 118(42), 24274. 37 Miao P C. First principles study on the adsorption behavior and catalytic process of CO on the surface of CeO2(111). Master’s Thesis, Harbin Institute of Technology, 2019 (in Chinese). 缪鹏程. CeO2(111)表面上CO的吸附行为和催化过程的第一性原理研究. 硕士学位论文, 哈尔滨工业大学, 2019. 38 Nørskov J K, Rossmeisl J, Logadottir A, et al. The Journal of Physical Chemistry B, 2004, 108(46), 17886. 39 Fei H, Dong J, Feng Y, et al. Nature Catalysis, 2018, 1(1), 63. 40 Nørskov J K, Bligaard T, Logadottir A, et al. Journal of the Electrochemical Society, 2005, 152(3), J23. 41 Anantharaj S, Ede S R, Karthick K, et al. Energy & Environmental Science, 2018, 11(4), 744. |
|
|
|