POLYMERS AND POLYMER MATRIX COMPOSITES |
|
|
|
|
|
Preparation of Pd Catalysts with Histidine Coordination Complex and Their Catalytic Performances on 2-Amylanthraquinone Hydrogenation |
YAN Hua1,2, YANG Xiaoye1, ZHOU Junhong1, YUAN Zhongshan1, LI Defu1, WANG Shudong1,*
|
1 Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning, China 2 University of Chinese Academy of Sciences, Beijing 100049, China |
|
|
Abstract In order to improve the catalytic activity and selectivity of the catalyst for anthraquinone hydrogenation, a series of Pd-his/SiO2-T (his represents histidine, and T is the calcination temperature) catalysts were prepared by impregnation method, with the coordination complex of Pd-(NO3)2 and histidine as the precursor. The catalysts were prepared with SiO2 as the support through impregnation method under different calcination temperatures, and applied in anthraquinone hydrogenation reaction. For comparison, a Pd/SiO2-500 catalyst free of histidine was prepared with the optimal calcination temperature, and other conditions were kept the same. The SiO2 support and all the catalysts were investigated by various characterization techniques in detail. It was found that, with the calcination temperature rising, the Pd dispersion of catalysts decreased during 300—400 ℃, however from 400 ℃ to 600 ℃, the Pd dispersion nearly kept the same. The content of residual carbon species shrank, while the ratio of Pd0 component and its electron cloud density increased. The evaluation of anthraquinone hydrogenation showed that the highest hydrogenation efficiency of the catalysts reached 12.8 g/L, which was 2.13 times as the Pd/SiO2-500, and has a superior selectivity of 99.67%.
|
Published: 25 June 2024
Online: 2024-07-17
|
|
Fund:National Natural Science Foundation of China (21306184). |
|
|
1 Zhang M X, Dai Y S, Xie J Y, et al. Precious Metals, 2018, 39(1), 68(in Chinese). 张孟旭, 戴云生, 谢继阳, 等. 贵金属, 2018, 39(1), 68. 2 Campos-Martin J M, Blanco-Brieva G, Fierro J L G. Angewandte Chemie International Edition, 2006, 45(42), 6962. 3 Drelinkiewicz A. Journal of Molecular Catalysis, 1992, 75, 321. 4 Drelinkiewicz A, Waksmundzka-Góra A. Journal of Molecular Catalysis A:Chemical, 2006, 246(1-2), 167. 5 Belykh L B, Skripov N I, Sterenchuk T P, et al. Catalysis Communications, 2020, 146, 106124. 6 Li A, Wang Y H, Ren J, et al. Applied Catalysis A:General, 2020, 593, 117422. 7 Sterenchuk T P, Belykh L B, Skripov N I, et al. Kinetics and Catalysis, 2018, 59(5), 585. 8 Zhang Y, Wang L, Wang N, et al. Microporous and Mesoporous Mate-rials, 2021, 312, 110672. 9 Yuan E, Wu C, Hou X, et al. Journal of Catalysis, 2017, 347, 79. 10 Wang L, Zhang Y, Ma Q, et al. RSC Advances, 2019, 9(59), 34581. 11 Zhang Y, Pan Z, Wang N, et al. Molecular Catalysis, 2021, 504, 111424. 12 Zhang Y, Wang L, Ma Q Q, et al. Catalysis Letters, 2022, 152, 1495. 13 Liang J Y, Wang F Y, Li W, et al. Molecular Catalysis, 2022, 524, 112264. 14 苏宏久,杨晓野,王树东,等. 中国专利,CN11094096,2016. 15 Yu J T, Cao J S, Du L H, et al. Applied Catalysis A:General, 2018, 555, 161. 16 Yang W Y, Ling F X, Shen Z Q, et al. Petrochemical Technology, 2017, 46(8), 985(in Chinese). 杨卫亚, 凌凤香, 沈智奇, 等. 石油化工, 2017, 46 (8), 985. 17 Wu Q L, Shen C Y, Liu C J. Applied Surface Science, 2023, 607, 154976. 18 Li B, Li H, Weng W Z, et al. Fuel, 2013, 103, 1032. 19 Liang H R, Wang L, Liu G Z. Chemical Industry and Engineering Progress, 2021, 40(4), 2060(in Chinese). 梁海瑞, 王涖, 刘国柱. 化工进展, 2021, 40(4), 2060. 20 Zhao Z J, Liu F, Qiu L M, et al. Acta Physico-Chimica Sinica, 2008, 24(9), 1685(in Chinese). 赵志娟, 刘芬, 邱丽美, 等. 物理化学学报, 2008, 24(9), 1685. 21 Kosydar R, Drelinkiewicz A, Lalik E, et al. Applied Catalysis A:General, 2011, 402(1-2), 121. 22 Li X T, Su H J, Ren G Y, et al. Applied Catalysis A:General, 2016, 517, 168. 23 Bai H X, Fang X C, Peng C. ACS Sustainable Chemistry & Engineering, 2019, 7(8), 7700. 24 Deng M Y, Zhang X X, Zong B N. Acta Petrolei Sinica(Petroleum Processing Section), 2022, 38(5), 1001(in Chinese). 邓明杨, 张晓昕, 宗保宁. 石油学报(石油加工), 2022, 38(5), 1001. 25 Pan Z Y. Acta Petrolei Sinica(Petroleum Processing Section), 2021, 37(3), 478(in Chinese). 潘智勇. 石油学报(石油加工), 2021, 37(3), 478. 26 Wang F Y, Jia Y M, Liang J Y, et al. Catalysis Science & Technology, 2022, 12, 1766. 27 Ingle A A, Ansari S Z, Shende D Z, et al. Journal of the Indian Chemical Society, 2020, 97, 1033. 28 Guo Y Y, Dai C N, Lei Z G. Chinese Journal of Catalysis, 2018, 39(6), 1070. 29 Guo Y Y, Dai C N, Lei Z G. Chemical Engineering and Processing-Process Intensification, 2019, 136, 211. 30 Li W Q, Wang F M, Zhang X B, et al. Applied Catalysis A:General, 2021, 619, 118124. 31 Wang Y H, Peng M, Ye C L, et al. Applied Organometallic Chemistry, 2019, 33(9), e5076. 32 Feng J T, Wang H Y, Evans D G, et al. Applied Catalysis A:General, 2010, 382(2), 240. 33 Xie J Y, Wang H Q, Yang J, et al. Chemical Industry and Engineering Progress, 2021, 40(2), 901(in Chinese). 谢继阳, 王红琴, 杨杰, 等. 化工进展, 2021, 40(2), 901. 34 Cai W Q, Zhuo J L, Fang J M, et al. Chinese Journal of Chemical Engineering, 2019, 27(8), 1863. 35 Li X T, Su H J, Li D W, et al. Applied Catalysis A:General, 2016, 528, 168. |
[1] |
YU Rui, GU Long, YAO Cunfeng, ZHANG Lu, WANG Guan, GUO Liang, WU Jinde, JIANG Wei, LI Jinyang. Advances in Research on Transmutation Fuel for Accelerator Driven Subcritical System[J]. Materials Reports, 2024, 38(7): 22110316-11. |
|
|
|
|