METALS AND METAL MATRIX COMPOSITES |
|
|
|
|
|
Research Progress on Oxidative Corrosion for Uranium and Uranium-Niobium Alloys in Moist Environments |
DING Qian1, LI Haibo1, LIAO Junsheng2,*
|
1 Science and Technology on Surface Physics and Chemistry Laboratory, Mianyang 621700, Sichuan, China 2 Institute of Material Science, Chinese Academic of Engineering and Physics, Mianyang 621700, Sichuan, China |
|
|
Abstract Uranium and uranium alloys are important materials for the nuclear industry, which are widely used in the fields of defense science and technology and nuclear energy. Uranium metal is highly susceptible to oxidation during storage due to its high chemical reactivity, resulting a decline of mechanical properties and nuclear reaction performance. And it is more prone to failure, especially when H2O exists. As an important type of uranium alloy material, uranium-niobium alloy has decent corrosion resistance. Unfortunately, it is still difficult to avoid surface oxidative corrosion during long-term storage. After decades of research at home and abroad, the corrosion law of uranium materials in typical atmospheres has been relatively clear, but consensus on the in-depth understanding of the corrosive mechanism has not entirely been reached yet. This paper summarizes and concludes the research work on the corrosive behavior of uranium and uranium-niobium alloys in humid environments such as anoxic and oxygenated water vapor. The corrosive mechanisms at each reaction stage are discussed and reviewed. Finally, we provide research perspectives on several controversial scientific issues, including the oxidative kinetics of uranium and uranium-niobium alloys in moist atmospheres, the adsorption and dissociation of H2O and O2 on the surface of uranium materials, the microscopic diffusion mechanisms and the evolution of intermediates such as UH3.
|
Published: 25 June 2024
Online: 2024-07-17
|
|
Fund:National Natural Science Foundation of China (22073084). |
|
|
1 Haschke J M. Journal of Alloys and Compounds, 1998, 278(1-2), 149. 2 Banos A, Burrows R, Scott T B. Coordination Chemistry Reviews, 2021, 439, 213899. 3 Xiong B T, Meng D Q, Yang W C. Atomic Energy Science and Technology, 2005, 39(3), 226 (in Chinese). 熊必涛, 蒙大桥, 杨维才. 原子能科学技术, 2005, 39(3), 226. 4 Ritchie A G. Journal of Nuclear Materials, 1981, 102(1-2), 170. 5 Pearce R J. Central Electricity Generating Board, 1989, 89, 6231. 6 Hilton B A. Review of oxidation rates of DOE spent nuclear fuel:Part 1:nuclear fuel, Argonne National Laboratory, US, 2000, pp. 17. 7 Banos A, Scott T B. Journal of Hazardous Materials, 2020, 399, 122763. 8 Colmenares C, Howell R, McCreary T. In:The 10th DOE conference of surface studies and 5th SUBWOB-12B technical exchange, US, 1981, pp. 8. 9 Delegard C H, Schmidt A J. Uranium metal reaction behavior in water, sludge, and grout matrices, Pacific Northwest National Laboratory, US, 2008. 10 McGillivray G W, Geeson D A, Greenwood R C. Journal of Nuclear Materials, 1994, 208(1-2), 81. 11 Baker M M, Less L N, Orman S. Transactions of the Faraday Society, 1966, 62, 2525. 12 Greenholt C J, Weirick L J. Journal of Nuclear Materials, 1987, 144(1-2), 110. 13 Corcoran V J, Johnston C, Metcalfe W J, et al. The water vapour corrosion of uranium and its prevention, Atomic Weapons Research Establishment, UK, 1965, pp. 5. 14 Baker M M, Bleloch J W, Less N, et al. Uranium compatibility studies. Part 3. The influence of oxygen on the uranium-water reaction, Atomic Weapons Research Establishment, UK, 1964, pp. 9. 15 Kaminski M. Batch Tests with unirradiated uranium metal fuel program report, Argonne National Laboratory, US, 2001, pp. 3. 16 Allen G C, Tucker P M, Lewis R A. Journal of the Chemical Society, Faraday Transactions 2:Molecular and Chemical Physics, 1984, 80(8), 991. 17 Colmenares C A. Progress in Solid State Chemistry, 1984, 15(4), 257. 18 Ritchie A G. Journal of Nuclear Materials, 1984, 120(2-3), 143. 19 Baker M M, Less L N, Orman S. Transactions of the Faraday Society, 1966, 62, 2513. 20 Totemeier T C. A review of the corrosion and pyrophoricity behavior of uranium and plutonium, Argonne National Laboratory, US, 1995, pp. 6. 21 Banos A, Harker N J, Scott T B. Corrosion Science, 2018, 136, 129. 22 Frank J W, Roebuck A H. Crevice corrosion of uranium and uranium alloys, Argonne National Laboratory, US, 1955, pp. 4. 23 Abrefah J, Sell R L. Oxidation of K-west basin spent nuclear fuel in moist helium atmosphere, Pacific Northwest National Laboratory, US, 1999, DOI:10.2172/7698. 24 Bennett M J, Myatt B L, Silvester D R V, et al. Journal of Nuclear Materials, 1975, 57(2), 221. 25 Totemeier T C, Pahl R G, Frank S M. Journal of Nuclear Materials, 1999, 265(3), 308. 26 Qin J W, Luo L Z, Shuai M B. Materials Reports A:Review Papers, 2017, 31(7), 17 (in Chinese). 秦建伟, 罗丽珠, 帅茂兵. 材料导报:综述篇, 2017, 31(7), 17. 27 Wu Y P, Zhu S F, Liu T W, et al. Journey of Nuclear and Radiochemistry, 2014, 36(6), 321 (in Chinese). 吴艳萍, 朱生发, 刘天伟, 等. 核化学与放射化学, 2014, 36(6), 321. 28 Kondo T, Beck F H, Fontana M G. Corrosion, 1974, 30(9), 330. 29 Hopkinson B E. Journal of the Electrochemical Society, 1959, 106(2), 102. 30 Zalkind S, Eshkenazy R, Harush S, et al. Journal of Nuclear Materials, 1994, 209, 169. 31 Kondo T, Verink E D, Beck F H, et al. Corrosion, 1964, 20(10), 314t. 32 Haschke J M, Stakebake J L. The chemistry of the actinide and transacti-nide elements, Morss L R, Edelstein N M, Fuger J, ed., Springer, 2010, pp.3199. 33 Waber J T, O'Rourke J A, Kleinberg R. Journal of the Electrochemical Society, 1959, 106(2), 96. 34 Yang J R. Study on oxidation kinetics of U-2.5wt%Nb alloy and effect of environmental corrosion on mechanical properties. Ph. D. Thesis, Graduate School of China Academy of Engineering Physics, China, 2007 (in Chinese). 杨江荣. U-2.5wt%Nb合金的氧化动力学与环境气氛腐蚀对力学性能的影响研究. 博士学位论文, 中国工程物理研究院, 2007. 35 Yang J, Wang X, Luo L, et al. Surface and Interface Analysis, 2008, 40(3-4), 299. 36 Cathcart J V, Pawel R E, Petersen G F. Oxidation of Metals, 1971, 3(6), 497. 37 Antill J E, Peakall K A. Journal of the Less Common Metals, 1961, 3(3), 239. 38 Cathcart J V, Petersen G F. Journal of Nuclear Materials, 1972, 43(2), 8. 39 Manner W L, Lloyd J A, Hanrahan R J, et al. Applied Surface Science, 1999, 150(1-4), 73. 40 Winer K, Colmenares C A, Smith R L, et al. Surface Science, 1987, 183(1-2), 67. 41 Allen G C, Tucker P M. Dalton Transactions, 1973, 1973(5), 470. 42 Shamir N, Tiferet E, Zalkind S, et al. Surface Science, 2006, 600(3), 657. 43 Nornes S B, Meisenheimer R G. Surface Science, 1979, 88(1), 191. 44 Tiferet E, Zalkind S, Mintz M H, et al. Surface Science, 2007, 601(4), 936. 45 Manner W L, Lloyd J A, Paffett M T. Journal of Nuclear Materials, 1999, 275(1), 37. 46 Balooch M, Hamza A V. Journal of Nuclear Materials, 1996, 230(3), 259. 47 Lloyd J A, Manner W L, Paffett M T. Surface Science, 1999, 423(2-3), 265. 48 Danon A, Koresh J E, Mintz M H. Langmuir, 1999, 15(18), 5913. 49 Mintz M H, Shamir N. Applied Surface Science, 2005, 252(3), 633 50 Tiferet E, Mintz M H, Zalkind S, et al. Journal of Alloys and Compounds, 2007, 444-445(Complete), 177. 51 Cohen S, Mintz M H, Zalkind S, et al. Solid State Ionics, 2014, 263, 39. 52 Senanayake S D, Idriss H. Surface Science, 2004, 563(1-3), 135. 53 Stultz J, Paffett M T, Joyce S A. The Journal of Physical Chemistry B, 2004, 108(7), 2362. 54 Idriss H. Surface Science Reports, 2010, 65(3), 67. 55 Senanayake S D, Rousseau R, Colegrave D, et al. Journal of Nuclear Materials, 2005, 342(1-3), 179. 56 Senanayake S D, Waterhouse G I N, Chan A S Y, et al. Catalysis Today, 2007, 120(2), 151. 57 Fuller E L, Smyrl N R, Condon J B, et al. Journal of Nuclear Materials, 1984, 120(2-3), 174. 58 Liu Z X. The adsorption and dissociation of oxygen-contained gas molecule on uranium surface:a first-principle study. Master's Thesis, Hunan University, China, 2012 (in Chinese). 刘智骁. 含氧气体分子在铀表面吸附与解离特性的第一性原理研究. 硕士学位论文, 湖南大学, 2012. 59 Liu Z X, Deng H Q, Hu W Y. The Chinese Journal of Nonferrous Metals, 2013, 23(4), 1160 (in Chinese). 刘智骁, 邓辉球, 胡望宇. 中国有色金属学报, 2013, 23(4), 1160. 60 Li G, Yu H L, Yin C. Rare Metal Materials and Engineering, 2014, 43(1), 85 (in Chinese). 李赣, 余慧龙, 银陈. 稀有金属材料与工程, 2014, 43(1), 85. 61 Niu J L. First-principles study of surface adsorption on diamond and uranium. Ph. D. Thesis, University of Electronic Science and Technology of China, China, 2008 (in Chinese). 聂锦兰. 金刚石和铀表面吸附特性的第一性原理研究. 博士学位论文, 电子科技大学, 2008. 62 Skomurski F N, Shuller L C, Ewing R C, et al. Journal of Nuclear Materials, 2008, 375(3), 290. 63 Bo T, Lan J H, Zhao Y L, et al. Journal of Nuclear Materials, 2014, 454(1-3), 446. 64 Tegner B E, Molinari M, Kerridge A, et al. The Journal of Physical Chemistry C, 2017, 121(3), 1675. 65 Bo T, Lan J H, Wang C Z, et al. The Journal of Physical Chemistry C, 2014, 118(38), 21935. 66 Wellington J P W, Tegner B E, Collard J, et al. The Journal of Physical Chemistry C, 2018, 122(13), 7149. 67 Tian X, Wang H, Xiao H, et al. Computational Materials Science, 2014, 91, 364. 68 Maldonado P, Evins L Z, Oppeneer P M. The Journal of Physical Che-mistry C, 2014, 118(16), 8491. 69 Rák Z, Ewing R C, Becker U. Surface Science, 2013, 608(Complete), 180. 70 Wang S, Li H, Li G, et al. Corrosion Science, 2022, 206, 110487. 71 Grimes J H, Morris J R. Uranium corrosion studies. Part I. An optical method for following oxide formation, Atomic Weapons Research Establishment, UK, 1965, pp. 10. 72 Grimes J H, Morris J R. Uranium corrosion studies. Part 2. The rate of reaction of polished uranium and water vapour at various temperatures, Atomic Weapons Research Establishment, UK, 1965, pp. 6. 73 Li H, Ding Q, Gu Y, et al. Corrosion Science, 2020, 176, 108879. 74 Contamin P, Bacmann J J, Martin J F. Journal of Nuclear Materials, 1972, 42(1), 54. 75 Orman S. Uranium compatibility studies. Part I. The interaction of ura-nium with gas-free water and water vapour, Atomic Weapons Research Establishment, UK, 1963, pp. 4. 76 ColbyL J. Journal of the Less Common Metals, 1966, 10(6), 425. 77 Santon J P. A kinetic study of the reaction of water vapor and carbon dio-xide on uranium, Commissariat a l'Energie Atomique, France, 1964, pp.50. 78 Cristy S S, Condon J B. In:Secondary Ion Mass Spectrometry SIMS V, Benninghoven A, Condon R J, Simons D S, Werner H W, ed., Springer, Germany, 1986, pp. 405. 79 Martin T L, Coe C, Bagot P A J, et al. Scientific Reports, 2016, 6(1), 1. 80 Banos A, Hallam K R, Scott T B. Corrosion Science, 2019, 152, 249. 81 Banos A, Hallam K R, Scott T B. Corrosion Science, 2019, 152, 261. 82 Banos A, Jowsey J, Adamska A, et al. Journal of Nuclear Materials, 2020, 535(1), 152178. 83 Harker N J. The corrosion of uranium in sealed environments containing oxygen and water vapour. Ph. D. Thesis, University of Bristol, UK, 2012. 84 Haschke J M, Allen T H, Morales L A. Journal of Alloys and Compounds, 2001, 314(1-2), 78. 85 Weirick L J. Oxidation of uranium in low partial pressures of oxygen and water vapor at 100 ℃, Sandia National Laboratory, US, 1984, pp. 25. 86 Li H, Zhong H, Gu Y, et al. Journal of Alloys and Compounds, 2018, 763(1), 153. 87 Schweke D, Maimon C, Chernia Z, et al. Journal of Applied Physics, 2012, 112(9), 8. 88 Idell Y, Siekhaus W, McLean W. Microscopy and Microanalysis, 2019, 25(S2), 1550. 89 Lin S Q, Lai X C, Lyu X C, et al. Journal of Nuclear and Radiochemistry, 2008, 30(2), 125 (in Chinese). 林斯勤, 赖新春, 吕学超, 等. 核化学与放射化学, 2008, 30(2), 125. 90 Idell Y, Au B, Jaycox A, et al. Measurement Science and Technology, 2020, 31(10), 10. 91 Winski D N. Design and construction of a polarization modulated infrared reflection absorption spectrometer and validation with carbon monoxide adsorption on a platinum (100) surface. Master's Thesis, University of Delaware, USA, 2009. 92 Krooswyk J D. Development of polarization-dependent infrared spectroscopy for studies of catalytic reactions on Pt(111). Ph. D. Thesis, University of Illinois at Chicago, USA, 2016. 93 Yu M. Studies on molecular adsorption and reaction on Ni(110) oxidized surface using UHV-FTIRS. Ph. D. Thesis, Shandong University, China, 2019 (in Chinese). 余敏. 单晶Ni(110)氧化表面分子吸附与反应的超高真空-红外光谱研究. 博士学位论文, 山东大学, 2019. 94 Cao Y J, Yu M, Qi S D, et al. The Journal of Physical Chemistry C, 2018, 122(41), 23441. 95 Cao Y J, Yu M, Qi S D, et al. Scientific Reports, 2017, 7, 43442. 96 Qu X, Li R S, He B, et al. Chinese Physics B, 2018, 27(7), 076501. 97 Qu X, He B, Li R, et al. Journal of Radioanalytical and Nuclear Che-mistry, 2018, 317(2), 1013. 98 Becker U, Rosso K M, Hochella M F J. Geochimica et Cosmochimica Acta, 2001, 65(16), 2641. 99 Wang X, Ji H, Li Z, et al. The Journal of Physical Chemistry C, 2021, 125(17), 9364. 100 Magnani N J. Reaction of uranium and its alloys with water vapor at low temperatures, Sandia Laboratories, US, 1974, pp. 5. 101 Burke J J. Physical Metallurgy of Uranium Alloys, Brook Hill Publishing Company, USA, 1976, pp. 815. 102 Kelly D, Lillard J A, Manner W L, et al. Journal of Vacuum Science & Technology A:Vacuum, Surfaces, and Films, 2001, 19(4), 1959. 103 Yang Y, Zhang P. Journal of Physics:Condensed Matter, 2015, 27(17), 175005. 104 Chen X L. The relationship between the microstructural character and corrosion behavior in the U-Nb system. Ph. D. Thesis, China Academy of Engineering Physics, China, 2020 (in Chinese). 陈向林. 铀铌合金中显微组织对电化学和氢化腐蚀行为的影响研究. 博士学位论文, 中国工程物理研究院, 2020. 105 Lu L. Electron energy loss spectroscopy study on surface oxidation behavior of uranium-niobium alloys. Master's Thesis,China Academy of Engineering Physics, China, 2003 (in Chinese). 陆雷. 铀铌合金表面氧化行为的电子能量损失谱研究. 硕士学位论文, 中国工程物理研究院, 2003. 106 Fu X, Liu K, Wang X, et al. Surface Review and Letters, 2003, 10(2-3), 381. |
|
|
|