INORGANIC MATERIALS AND CERAMIC MATRIX COMPOSITES |
|
|
|
|
|
Research Progress in Structural Design Concept of Three-dimensional Photothermal Evaporator |
SUN Qimeng, SUN Miao, QI Yanfei, JIN Guoqing, ZHOU Xinghai, LYU Lihua, WEI Chunyan, GAO Yuan*
|
School of Textile and Materials Engineering, Dalian Polytechnic University, Dalian 116034, Liaoning, China |
|
|
Abstract Solar-driven interface evaporation process has attracted wide spread attention due to its environmentally friendly and non-pollution characteristics. Seawater desalination using solar photothermal evaporator can effectively alleviate the plight of the shortage of freshwater resources on the earth's surface. After decades of development, the process and mechanism of photothermal evaporation have gradually become clear, and a variety of materials and shapes of evaporators have been developed. Due to the 3D cavity structure, the three-dimensional (3D) photothermal evaporator can not only allow multiple reflections of light to promote absorption, but also improve heat management and promote water evaporation with its large side area, which has broad application prospects. This paper briefly describes 3D photothermal evaporator and its research progress in the application of seawater desalination, and summarizes the effects of different 3D evaporator structures on the evaporation rate and efficiency in terms of light absorption, heat management, salt crystallization, etc. Finally, the problems in the current research and practical application of photothermal evaporator are summarized, and the development trend of photothermal evaporation technology in the future is predicted.
|
Published: 25 July 2024
Online: 2024-08-12
|
|
Fund:Liaoning Provincial Department of Education Basic of China (LJKQZ20222286). |
|
|
1 Wang T Y, Huang H B, Li H L, et al. New Carbon Materials, 2021, 36(4),683. 2 Han X H, Ding S Q, Hu H Y, et al. Journal of Materials Chemistry A, 2022, 10(36),18509. 3 Huang Q C, Liang X C, Yan C Y, et al. Applied Energy, 2021, 283,116361. 4 Li Z T, Xu X T, Sheng X R, et al. ACS Nano, 2021, 15(8),12535. 5 Tao P, George N, Song C Y, et al. Nature Energy, 2018, 3(12), 1031. 6 Gao Y, Sun Q M, Chen Y, et al. Chemical Engineering Journal, 2023, 455, 140500. 7 Ridha D, Laila N, Van-Duong D, et al. Chemical Engineering Journal, 2022, 431, 134024. 8 Kwanghyun K, Sunyoung Y, Cheolwon A, et al. ACS Applied Materials & Interfaces, 2018, 10(18), 15602. 9 Ma X L, Zhao J, Wang R, et al. Applied Energy, 2022, 328,120203. 10 Zhu G L, Xu J J, Zhao W L, et al. ACS Applied Materials & Interfaces, 2016, 8(46),31716. 11 Wang X, Liu Q C, Wu S Y, et al. Advanced Materials, 2019, 31(19),1807716. 12 Tu C, Cai W F, Chen X, et al. Small, 2019, 15(37),1902070. 13 Li X P, Li X F, Li H G, et al. Advanced Functional Materials, 2021, 32(15),2110636. 14 Lin Z X, Wu T T, Jia B X, et al. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 637,128272. 15 Wang L F, Liu C J, Wang H, et al. ACS Applied Materials & Interfaces, 2020, 12(21),24328. 16 Wang Z X, Wu X C, Dong J M, et al. Chemical Engineering Journal, 2022, 427,130905. 17 Cao N N, Lu S T, Yao R, et al. Chemical Engineering Journal, 2020, 397,125522. 18 Shi L, Yusuf S, Zhuo S F, et al. Nano Energy, 2019, 60, 222. 19 Shi Y, Li R Y, Jin Y, et al. Joule, 2018, 2(6),1171. 20 Wang Y C, Sun X Y, Tao S Y. Environmental Science & Technology, 2020, 54(24),16240. 21 Wang Y C, Wang C Z, Song X J, et al. Journal of Materials Chemistry A, 2018, 6(21),9874. 22 Yang Y D, Sui Y J, Cai Z S, et al. Global Challenges, 2019, 3(9),1900004. 23 Zhu J Y, Liu J R, Liu J C, et al. Desalination, 2023, 548,116275. 24 Wang J T, Hong J L. Applied Thermal Engineering, 2020, 178,115636. 25 Sun S H, Shi C C, Kuang Y D, et al. Water Research, 2022, 226,119279. 26 Nahian Al Subri Ivan, Ahmed Mortuza Saleque, Safayet Ahmed, et al. ACS Applied Materials & Interfaces, 2022, 14(6),7936. 27 Gao M M, Zhu L L, Connor K P, et al. Energy & Environmental Science, 2019, 12(3), 841. 28 Huang H, Zhao L, Yu Q, et al. ACS Applied Materials & Interfaces, 2020, 12(9),11204 29 Liu F Q, Xia L M, Zhang L Y, et al. ACS Applied Materials & Interfaces, 2021, 13(46),55299. 30 Fang Q L, Li T T, Lin H B, et al. ACS Applied Energy Materials, 2019, 2(6), 4354. 31 Hao D D, Yang Y D, Xu B, et al. ACS Sustainable Chemistry & Engineering, 2018, 6(8),10789. 32 Hu T, Li L X, Yang Y F, et al. Journal of Materials Chemistry A, 2020, 8(29),14736. 33 Liu Z X, Zhong Q P, Wu N Y, et al. Desalination, 2021, 509,115072. 34 Daniel P S, Jack L P, Wu X, et al. ACS Applied Materials & Interfaces, 2020, 12(13),15279. 35 Chen Y, Qiu H S, Li X F, et al. Applied Surface Science, 2022, 582,152483. 36 Zhang Q Y, Yang X H, Deng H L, et al. Desalination, 2022, 526,115544. 37 Zhang W, Chang Q, Xue C R, et al. Solar RRL, 2021,5,2100133. 38 Lei Z W, Sun X T, Zhu S F, et al. Nano-Micro Letters, 2021, 14(1), 10. 39 Xia Y, Hou Q F, Hasan J, et al. Energy & Environmental Science, 2019, 12(6),1840. 40 Wang Z X, Huang H, Huang S Q, et al. Reactive & Functional Polymers, 2022, 175,105270. 41 Wu P, Wu X, Wang Y D, et al. Water Research, 2022, 212,118099. 42 Su L F, Hu Y Q, Ma Z Q, et al. Solar Energy Materials and Solar Cells, 2020, 210,110484. 43 Ni G, Li G, Svetlana V B, et al. Nature Energy, 2016, 1(9),16126. 44 Yu Z, Cheng S A, Li C C, et al. ACS Applied Materials & Interfaces, 2019, 11(35),32038. 45 Wang Z X, Han M C, He F, et al. Nano Energy, 2020, 74,104886. 46 Song H M, Liu Y H, Liu Z J, et al. Advanced Science, 2018, 5(8),1800222. 47 Li X Q, Li J L, Lu J Y, et al. Joule, 2018, 2(7),1331. 48 Wang Y D, Wu X, Yang X F, et al. Nano Energy, 2020, 78,105269. 49 Li W, Tian X H, Li X F, et al. Journal of Colloid and Interface Science, 2022, 606(1),748. 50 Li Z T, Zhang J, Zang S H, et al. Nano Energy, 2020, 73,104834. 51 Wang Z X, Wu X C, He F, et al. Advanced Functional Materials, 2021, 31(22),2011114. 52 Li W, Li X F, Chang W, et al. Nano Research, 2020, 13(11),3048. 53 Li W, Tian X H, Li X F, et al. Journal of Materials Chemistry A, 2021, 9(26), 14859. 54 Gao H, Bing N C, Bao Z J, et al. Chemical Engineering Journal, 2023, 454,140362. 55 Liang Y Z, Guo J C, Li J J, et al. Advanced Sustainable Systems, 2022, 6(10),2200236. 56 Shi Y Y, Zhang C F, Wang Y H, et al. Desalination, 2021, 507,115038. 57 Guo Y H, Zhou X Y, Zhao F, et al. ACS Nano, 2019, 13(7),7913. 58 Zhao F, Zhou X Y, Shi Y, et al. Nature Nanotechnology, 2018, 13(6),489. 59 Hou X T, Sun H Y, Dong F Y, et al. Chemosphere, 2023, 315, 137732. 60 Li J Y, Jing Y J, Xing G Y, et al. Journal of Materials Chemistry A, 2022, 10(36),18470. 61 Xia Y X, Kang Y, Wang Z Y, et al. Journal of Materials Chemistry A, 2021, 9(11), 6612. 62 Xu K Y, Wang C B, Li Z T, et al. Advanced Functional Materials, 2020, 31(8),2007855. 63 Muhammad S I, Wang X, Adil A, et al. Carbon, 2021, 176, 313. 64 Luo S S, Li Z L, Cui X M, et al. Chemical Engineering Journal, 2023, 454,140286. 65 Wang J L, Wang W K, Feng L, et al. Solar Energy Materials and Solar Cells, 2021, 231,111329. 66 Wang M, Xu G R, An Z H, et al. Separation and Purification Technology, 2022, 287, 120534. 67 Ai S, Li T J, Chen Y Z, et al. Chemical Engineering Journal, 2022, 431,134333. 68 Hu Z C, Ren L P, Zhang Q, et al. Materials Letters, 2023, 333, 133619. 69 Xu D, Zhong H, Li M G, et al. Carbon, 2023, 204,231. 70 Xu W C, Hu X Z, Zhuang S D, et al. Advanced Energy Materials, 2018, 8(14),1702884. 71 Zhu M W, Li Y J, Chen F J, et al. Advanced Energy Materials, 2018, 8(4),1701028. 72 Zhang Q, Hu R, Chen Y L, et al. Applied Energy, 2020, 276,115545. 73 Zhang C, Shi Y, Shi L, et al. Natural Communication, 2021, 12(1),998. 74 Peng H Y, Wang D, Fu S H. Chemical Engineering Journal, 2021, 426, 131818. 75 Wu L, Dong Z C, Cai Z R, et al. Natural Communication, 2020, 11(1),521. 76 Wu X, Wang Y D, Wu P, et al. Advanced Functional Materials, 2021, 31(34),2102618. |
[1] |
WANG Zhengxing, REN Yongsheng, MA Wenhui, LYU Guoqiang, ZENG Yi, ZHAN Shu, CHEN Hui, WANG Zhe. Principle, Process and Prospect of Monocrystalline Silicon Growth with Czochralski Method[J]. Materials Reports, 2024, 38(9): 22100160-13. |
|
|
|
|