POLYMERS AND POLYMER MATRIX COMPOSITES |
|
|
|
|
|
Electrostatic Self-assembly Method for the Preparation of Antibacterial and Anticoagulant Surface Coating |
LI Pengcheng, WEI Jiajia, MENG Haotian, WANG Wenxuan, LI Jiajun, LI Da, TU Qiufen*
|
School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China |
|
|
Abstract The high morbidity and mortality caused by thrombosis and pathogen contamination have severely restricted the application and development of blood-contact medical devices in clinical treatment. In this work, based on the outstanding antibacterial properties of lysozyme (LZM) and its positive charge over a wide pH range, negatively charged polystyrene sodium sulfonate (PSS) with excellent blood compatibility was electrostatically self-assembled to the surface of the material, creating an antibacterial and anticoagulant bio-functional coating. The results of material characterisation, including Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), surface potential, and water contact angle (WCA), demonstrated the successful fabrication of PDA@LZM/PSS coating. Bacterial experiments revealed that the PDA@LZM/PSS coating had an outstanding killing effect on both Gram-negative and Gram-positive bacteria. Blood experiments showed that the coated surface had excellent anti-platelet adhesion, activation, and anti-thrombosis properties. The results of cell experiments indicated that the coating was non-cytotoxic and could be applied to the surface modification of blood-contact devices. Lastly, stability testing indicated that the coating could maintain its antibacterial and anticoagulant capabilities relatively stable for seven days. The coating preparation was simple and fast, allowing it to be applied to antibacterial and anticoagulant modification on the surface of blood-contact instruments, thereby reducing the risk of thrombus formation and bacterial infection.
|
Published: 25 July 2024
Online: 2024-08-12
|
|
|
|
1 Hutton D W, Krein S L, Saint S, et al. Journal of the American Geriatrics Society, 2018, 66(4), 742. 2 Li X, Sim M M S, Wood J P. Arteriosclerosis Thrombosis & Vascular Bio-logy, 2020, 40(5), e119. 3 Meijden P E J V D, Heemskerk J W M. Nature Reviews Cardiology, 2019, 16(3), 166. 4 von Nussbaum F, Brands M, Hinzen B, et al. ChemInform, 2006, 37(47). 5 Murphy K E, Sloan G F, Lawhern G V, et al. Future Medicinal Chemistry, 2020, 12(22), 2067. 6 Dowgiallo M G, Miller B C, Kassu M, et al. Chemical Science, 2022, 13(12), 3447. 7 Hirsh J, Dalen J E, Deykin D, et al. Chest, 1992, 102, 337S. 8 Wiviott S D, Steg P G. Lancet, 2015, 386(9990), 292. 9 Bury D, Ter Heine R, van de Garde E M W, et al. European Journal of Clinical Pharmacology, 2019, 75(7), 921. 10 Visek J, Ryskova L, Safranek R, et al. Clinical Nutrition ESPEN, 2019, 30, 107. 11 Hutt E, Hsu C, Bloomfield D M, et al. Journal of the American College of Cardiology, 2021, 78(6), 625. 12 Fleming A. Proceedings of the Royal Society of London, 1922, 93(653), 306. 13 Saravanan R, Shanmugam A, Ashok P, et al. African Journal of Biotechnology, 2009, 8(1), 107. 14 Jiang L, Li Y, Wang L, et al. Frontiers in Pharmacology 2021, 12, 767642. 15 Ferraboschi P, Ciceri S, Grisenti P. Antibiotics (Basel), 2021, 10(12), 1534. 16 Beaussart A, Retourney C, Quiles F, et al. Journal of Colloid And Interface Science, 2021, 582, 764. 17 Green R J, Su T J, Lu J R, et al. Journal of Physical Chemistry B, 2001, 105(8), 1594. 18 Xu K, Cai K. Materials Letters, 2019, 247, 95. 19 Zhu Y, Sun X, Ding J, et al. Food Science and Technology, 2021, 143, 111136. 20 Li W, Adams T E, Nangalia J, et al. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(12), 4661. 21 Solari F, Varacallo M, Low molecular weight heparin (LMWH), StatPearls Publishing,Treasure Island (FL),2019. 22 Seffer M T, Cottam D, Forni L G, et al. Blood Purification, 2021, 50(1), 28. 23 Wang J, Chen F, Arconada-Alvarez S J, et al. Nano Letters, 2016, 16(10), 6265. 24 De Troyer M, Wissing K M, De Clerck D, et al. Frontiers In Medicine, 2022, 9, 1009748. 25 Kolewe K W, Zhu J, Mako N R, et al. ACS Applied Materials & Interfaces, 2017, 10(3), 2275. 26 Wang H, Wang J, Feng J, et al. ACS Applied Materials & Interfaces, 2022, 14(44), 50142. 27 Ma H, Qiao X, Han L. Biomimetics (Basel), 2023, 8(1), 128. 28 Kim M H, Lee J, Lee J N, et al. Acta Biomaterialia, 2021, 123, 254. 29 Yu Q, Zheng Z, Dong X, et al. Soft Matter, 2021, 17(39), 8786. 30 Lee H, Dellatore S M, Miller W M, et al. Science, 2007, 318(5849), 426. 31 Hu Y, Cai K. Journal of Biomedical Engineering, 2008, 25(3), 738. 32 Song Z, Yin J, Luo K, et al. Macromolecular Bioscience, 2009, 9(3), 268. 33 Decher G, Hong J D, Schmitt J. Thin Solid Films, 1992, s 210-211(2), 831. 34 Solonchenko K, Rybalkina O, Chuprynina D, et al. Polymers, 2022, 14(23), 5172. 35 Donath E, Sukhorukov G B, Caruso F, et al. Angewandte Chemie International Edition, 1998, 37(16), 2201. 36 Onda M, Ariga K, Kunitake T. Journal of Bioscience And Bioengineering, 1999, 87(1), 69. 37 Sakr O S, Jordan O, Borchard G. Drug Delivery, 2016, 23(8), 2747. 38 Fu X C, Shen W X, Yao T Y, et al. Physical chemistry(fifth edition), Higher Education Press, China, 2005(in Chinese). 傅献彩, 沈文霞, 姚天扬, 等.物理化学(第5版), 高等教育出版社, 2005. 39 Sekowski S, Olchowik-Grabarek E, Wieckowska W, et al. Colloids and Surfaces B: Biointerfaces, 2020, 194, 111175. |
|
|
|