POLYMERS AND POLYMER MATRIX COMPOSITES |
|
|
|
|
|
The Fabrication of Polystyrene Nanoparticle Microarrays Through the Micropatterned PEGMA Brush Induced Assembly |
GAO Hao, WEI Zhonghua, DENG Jia, CHEN Tao, ZHAO Haili*
|
Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650504, China |
|
|
Abstract Hydrophilic poly(ethylene glycol) methacrylate (PEGMA) brush micropatterns were prepared on the hydrophobic initiator surface based on the photoinitiated atom transfer radical polymerization (ATRP) reaction. With PEGMA brushes micropatterned substrate acted as a template, the precise assembly of polystyrene (PS) nanoparticles in the hydrophilic region was achieved by utilizing the surface energy difference between hydrophilic and hydrophobic regions, enabling the fabrication of nanoparticle microarrays. X-ray photoelectron spectroscopy (XPS) tests revealed that the covalent immobilization of 3-(Trimethoxysilyl) propyl 2-bromo-2-methylpropanoate (SiBr) initiator on the polydopamine (PDA) surface was achieved. Raman spectroscopy tests indicated the growth of PEGMA brushes on the initiator surface and the assembly of PS nanoparticles on the PEGMA brushes surface. Optical microscopy and scanning electron microscopy (SEM) characterizations showed the selective assembly of PS nanoparticles on the PEGMA brush regions, leading to the successful fabrication of nanoparticle microarrays. Fluorescein thiocyanate-labeled bovine serum protein (FITC-BSA) was applied to detect the protein adsorption behavior of PS nanoparticles, and the results demonstrated the PS nanoparticles could effectively promote the adhesion of BSA protein on the antifouling PEGMA brush region. The presented fabrication technique shows great potential in the fabrication of nanoparticle microarrays with complex structures and provides technical support for the application of nanoparticles in high-throughput bio-microarrays and bioprobes.
|
Published: 25 July 2024
Online: 2024-08-12
|
|
Fund:National Natural Science Foundation of China (52103262). |
|
|
1 Peng J, Li J, Xu W, et al. Analytical Chemistry, 2018, 90(3), 1628. 2 Barad H N, Kwon H, Alarcon-Correa M, et al. ACS Nano, 2021, 15(4), 5861. 3 Morsi R E, Alsabagh A M, Nasr S A, et al. International Journal of Biological Macromolecules, 2017, 97, 264. 4 Sim X M, Wang C G, Liu X, et al. ACS Applied Materials & Interfaces, 2020, 12(25), 28711. 5 许荔, 江晓禹. 材料科学与工程学报, 2005, 23(6), 933. 6 Li H, Xu S, Wang S, et al. Journal of Water Process Engineering, 2020, 38. 7 Cepriá G, Pardo J, Lopez A, et al. Sensors and Actuators, B: Chemical, 2016, 230, 25. 8 Williams R M, Shah J, Tian H S, et al. Hypertension, 2018, 71(1), 87. 9 Kaliannagounder V K, Raj N P M J, Unnithan A R, et al. Nano Energy, 2021, 85,105901. 10 Deng D, Zhang D, Li Y, et al. Biosensors and Bioelectronics, 2013, 49, 216. 11 Gagino M, Katsikis G, Olcum S, et al. ACS Sensors, 2020, 5(4), 1230. 12 Bog U, de Los Santos Pereira A, Mueller S L, et al. ACS Applied Mate-rials & Interfaces, 2017, 9(13), 12109. 13 Azzaroni O. Journal of Polymer Science Part A: Polymer Chemistry, 2012, 50(16), 3225. 14 Suetin N V, Evlashin S A, Egorov A V, et al. Physical Chemistry Chemical Physics, 2016, 18(17), 12344. 15 Shen S J, Lee D, Wu Y C, et al. Materials (Basel), 2021, 14(2), 274. 16 Wang Y, Zhang K, Tian T, et al. ACS Applied Materials & Interfaces, 2021, 13(4), 4886. 17 Wang C, Yap F L, Zhang Y. Colloids and Surfaces B: Biointerfaces, 2005, 46(4), 255. 18 Utgenannt A, Maspero R, Fortini A, et al. ACS Nano, 2016, 10(2), 2232. 19 Pang J, Theodorou I G, Centeno A, et al. Journal of Materials Chemistry C, 2017, 5(4), 917. 20 Galloway J M, Bramble J P, Rawlings A E, et al. Small, 2012, 8(2), 204. 21 Eklof-Osterberg J, Lofgren J, Erhart P, et al. Journal of Physical Chemistry C, 2020, 124(8), 4660. 22 Jiang C, Chan P H, Leung C W, et al. Journal of Physical Chemistry C, 2017, 121(40), 22508. 23 Lim D, Noh S, Song Y. Journal of Materials Research and Technology, 2021, 14, 3150. 24 Pradhan S S, Saha S. Advances in Colloid and Interface Science, 2022, 300, 102580. 25 吴家宇, 李丹, 康龙, 等. 材料导报, 2018, 32(4), 549. 26 Mensink L I S, Snoeijer J H, de Beer S. Macromolecules, 2019, 52(5), 2015. 27 Ma S, Lin L, Wang Q, et al. ACS Applied Materials & Interfaces, 2019, 11(31), 28527. 28 Ma K, Ma Y L, Zhao H L, et al. Acta Polymerica Sinica, 2018(5), 571(in Chinese). 马康, 马玉录, 赵海利, 等. 高分子学报, 2018(5), 571. 29 Rella S, Mazzotta E, Caroli A, et al. Applied Surface Science, 2018, 447, 31. 30 Lin C, Gong F, Yang Z, et al. Polymer Testing, 2018, 68, 126. 31 Xia H, Yang R, Li H M, et al. Journal of Yili Normal University(Natural Science Edition), 2016, 10(4), 19(in Chinese). 夏欢, 杨榕, 李红梅, 等. 伊犁师范学院学报: 自然科学版, 2016, 10(4), 19. 32 Cheng Y W, Lin Y T, Liu K H, et al. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 642, 128719. 33 Javadi A, Dowlati S, Shourni S, et al. Advances in Colloid and Interface Science, 2022, 301, 102601. |
|
|
|