INORGANIC MATERIALS AND CERAMIC MATRIX COMPOSITES |
|
|
|
|
|
Performance of Chitosan-Derived Carbon-coated Nanosilicon Anode Materials for Lithium-ion Batteries |
WU Qiang1, LI Zhengwei1, ZHOU Jianhua1,*, ZHANG Dongmei2, DANG Feng2, LIU Wenping3, MIAO Lei1,*
|
1 Guangxi Key Laboratory of Information Materials, School of Materials Science and Engineering, Guilin University of Electronic Technology, Guilin 541004, Guangxi, China 2 School of Materials Science and Engineering, Shandong University, Jinan 250061, China 3 National Special Mineral Materials Engineering Technology Research Center & Guangxi Key Laboratory of Superhard Materials, China Nonferrous Metal (Guilin) Geology and Mining Co., Ltd., Guilin 541004, Guangxi, China |
|
|
Abstract Silicon anode material has become an ideal material to replace graphite anode due to its high theoretical capacity (4 200 mAh/g), low opera-ting voltage (0.2—0.3 V vs Li/Li+) and abundant raw materials on the earth for energy storage. However, the volume expansion of silicon anode materials would lead to electrode degradation during the cycle. Therefore, in this paper, chitosan/graphite@silicon (C/G@Si) composite was prepared by using chitosan and graphite to achieve carbon coating and compositing on nano silicon through physical methods. For C/G@Si, the structure, morphology and electrochemical properties of the composites were studied. The results showed that with the increase of graphite addition, the reversible specific capacity decreased slightly, while the cycle performance and conductivity improved significantly. When 50wt% graphite was added, the specific capacity of the first discharge was 1 136.1 mAh/g under the current density of 100 mA/g, and the residual capacity remained at 658.5 mAh/g after 100 cycles of charging/discharging, which exhibits excellent electrochemical performance and has certain reference value for further promotion of silicon-carbon anode materials.
|
Published: 25 May 2024
Online: 2024-05-28
|
|
Fund:Central Guiding Local Science and Technology Development Fund Project (ZY21195037), Guangxi Distinguished Youth Fund (2019GXNSFFA245010), National Natural Science Foundation of China (52173094), and Guilin Scientific Research and Technology Development Plan (20220110-1). |
|
|
1 Shi Q, Zhou J, Ullah S, et al. Energy Storage Materials, 2021, 34, 735. 2 Wang B, Li W, Wu T, et al. Energy Storage Materials, 2018, 15, 139. 3 Dou F, Shi L, Chen G, et al. Electrochemical Energy Reviews, 2019, 2(1), 149. 4 Yu Z Z, Tian B, Li Y, et al. ACS Applied Materials & Interfaces, 2018, 11(1), 534. 5 Lu J, Chen Z, Pan F, et al. Electrochemical Energy Reviews, 2018, 1(1), 35. 6 Zhu G, Chao D, Xu W, et al. ACS Nano, 2021, 15(10), 15567. 7 Li P, Kim H, Myung S T, et al. Energy Storage Materials, 2021, 35, 550. 8 Dai H, Dong J, Wu M, et al. Angewandte Chemie International Edition, 2021, 60(36), 19852. 9 Yan Y, Lin J, Liu T, et al. Corrosion Science, 2022, 200, 110231. 10 Zhang S, Sun L, Fan Q, et al. Nano Research Energy, 2022, 1(1), e9120001. 11 Patnaik S G, Vedarajan R, Matsumi N. Journal of Materials Chemistry A, 2017, 5(34), 17909. 12 Zhao W, Wang X, Ma X, et al. Journal of Materials Chemistry A, 2021, 9(48), 27615. 13 Han X, Zhou W, Chen M, et al. Journal of Energy Chemistry, 2022, 67, 727. 14 Chu X, Wang Y, Cai L, et al. SusMat, 2022, 2(3), 379. 15 Liu N, Lu Z, Zhao J, et al. Nature Nanotechnology, 2014, 9(3), 187. 16 Zhang L, Wang C, Dou Y, et al. Angewandte Chemie International Edition, 2019, 58(26), 8824. 17 Bao K Q, Zhang Z K, Piao X Q, et al. Journal of East China Normal University(Natural Sciences), 2022, 2022(1), 22(in Chinese). 鲍恺婧, 张召凯, 朴贤卿, 等. 华东师范大学学报(自然科学版), 2022, 2022(1), 22. 18 Bai X J, Liu C, Hou M, et al. Journal of Inorganic Materials, 2017, 32(7), 705(in Chinese). 白雪君, 刘婵, 侯敏, 等. 无机材料学报, 2017, 32(7), 705. 19 Xu Q, Li J Y, Sun J K, et al. Advanced Energy Materials, 2017, 7(3), 1601481. 20 Liu N, Liu J, Jia D, et al. Energy Storage Materials, 2019, 18, 165. 21 Zhang Y C, You Y, Xin S, et al. Nano Energy, 2016, 25, 120. 22 Liu W P, Xu H R, Qin H Q, et al. Silicon, 2020, 12(9), 2259. 23 Chen H, Wang Z, Hou X, et al. Electrochimica Acta, 2017, 249, 113. 24 Wang G, Xu B, Shi J, et al. Applied Surface Science, 2018, 436, 505. 25 Hu X, Huang S, Hou X, et al. Silicon, 2018, 10(4), 1443. 26 Zhou Y, Tian Z, Fan R, et al. Powder Technology, 2015, 284, 365. 27 Zhou Y, Guo H, Wang Z, et al. Journal of Alloys and Compounds, 2017, 725, 1304. 28 Miroshnikov Y, Zitoun D. Journal of Nanoparticle Research, 2017, 19(11), 1. 29 Chen H, Hou X, Chen F, et al. Carbon, 2018, 130, 433. 30 Wang M, Xiao X. Journal of Power Sources, 2016, 326, 365. 31 He D, Huang X, Li M. Carbon, 2019, 141, 531. 32 Kalaga K, Rodrigues M T F, Trask S E, et al. Electrochimica Acta, 2018, 280, 221. 33 Kalaga K, Shkrob I A, Haasch R T, et al. Journal of Physical Chemistry C, 2017, 121(42), 23333. 34 Liu N, Liu J, Jia D, et al. Energy Storage Materials, 2019, 18, 165. 35 Zhou Y, Guo H, Yong Y, et al. Materials Letters, 2017, 195, 164. 36 Luo W, Wang Y, Wang L, et al. ACS Nano, 2016, 10(11), 10524. 37 Chen H, Shen K, Hou X, et al. Applied Surface Science, 2019, 470, 496. 38 He W, Tian H, Xin F, et al. Journal of Materials Chemistry A, 2015, 3(35), 17956. 39 Chen S, Shen L, van Aken P A, et al. Advanced Materials, 2017, 29(21), 1605650. 40 Zhang D M, Yang R N, Zhou J H, et al. Energy Storage Materials, 2023, 63, 102976. |
|
|
|