POLYMERS AND POLYMER MATRIX COMPOSITES |
|
|
|
|
|
Research Progress on Carbon Footprint of Waste Plastic Pyrolysis Technology |
ZHOU Hewen1,2,†, YAO Dunxue1,†, YANG Qing1,*
|
1 School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China 2 Institute of Advanced Technology, Shandong University, Jinan 250199, China |
|
|
Abstract In the context of carbon peak and carbon neutrality, low-carbon utilization is the main development trend of the waste plastic processing industry. Pyrolysis can convert hydrocarbons in waste plastics into high-value-added carbon-containing products, avoid greenhouse gas emissions caused by waste incineration and landfill, and realize high-value utilization, helping to build a green and low-carbon recycling industrial system. Based on advanced pyrolysis technologies, this paper reviews the progress of research on the life cycle carbon footprint of waste plastics. Firstly, this paper introduces the characteristics of waste plastic raw materials and pyrolysis products from the perspective of carbon transfer and transformation, and then summarizes the current domestic and international pyrolysis carbon sequestration ideas for the preparation of solid carbon products from waste plastics from the perspective of carbon life cycle. By introducing the methodology and steps of the life cycle carbon footprint of the waste plastic pyrolysis system, expounding on the carbon footprint assessment index and connotation. The research status of the life cycle carbon footprint of the waste plastic pyrolysis system is summarized and reviewed from the perspective of carbon sequestration by different waste plastic pyrolysis technologies, focusing on the difficulty in comparing the carbon footprint results of different studies due to inconsistent system boundaries and data sources, and emphasizing that the current life cycle carbon footprint research of the waste plastic pyrolysis system needs to build a multi-scale model, deeply explore the interrelationship between different scale data, increase data transparency, and clearly describe the calculation results of different scales, so that the research results can be compared and have extensive reference value. Finally, we put forward the development prospects of the life cycle of waste plastics, in order to provide a theoretical reference for the future development of the waste plastic pyrolysis industry.
|
Published: 25 July 2024
Online: 2024-08-12
|
|
Fund:National Key Research and Development Program of China (2022YFC3902405). |
|
|
1 Ma Z F, Niu G Q, Lu S. China Plastics, 2022, 36(6), 142 (in Chinese). 马占峰, 牛国强, 芦珊. 中国塑料, 2022, 36(6), 142. 2 Sardon H, Dove A P. Science, 2018, 360, 380. 3 Geyer R. In:Plastic waste and recycling, Letcher T M, ed., Elsevier, Amsterdam, 2020, pp. 664. 4 Tang G L, Hu B, Kang Z L, et al. Recyclable Resources and Circular Economy, 2013, 6(1), 31 (in Chinese). 汤桂兰, 胡彪, 康在龙, 等. 再生资源与循环经济, 2013, 6(1), 31. 5 Quina M J, Bordado J C M, Quinta-Ferreira R M. Journal of Hazardous Materials, 2010, 179, 382. 6 Cordova M R, Riani E. Marine Pollution Bulletin, 2021, 163, 111986. 7 Munir M T, Mansouri S S, Udugama I A, et al. Renewable and Sustai-nable Energy Reviews, 2018, 96, 64. 8 Schirmeister C G, Mülhaupt R. Macromolecular Rapid Communications, 2022, 43, 2200247. 9 Garcia J M, Robertson M L. Science, 2017, 358, 870. 10 Dai L L, Zhou N, Lv Y C, et al. Progress in Energy and Combustion Science, 2022, 93, 101021. 11 Weber R, Hagenmaier H. Chemosphere, 1999, 38(3), 529. 12 Kang Y T, Yang Q, Wang L, et al. Resources, Conservation and Recycling, 2022, 180, 106168. 13 Peng Y J, Wang Y P, Ke L Y, et al. Energy Conversion and Management, 2022, 254, 115243. 14 Rahimi A, García J M. Nature Reviews Chemistry, 2017, 1, 46. 15 Han J, Yao X, Zhan Y Q, et al. Journal of the Energy Institute, 2017, 90, 331. 16 Zhuo C W, Levendis Y A. Journal of Applied Polymer Science, 2013, 131(4), 1001. 17 Seo M W, Lee S H, Nam H, et al. Bioresource Technology, 2022, 343, 126109. 18 Li D, Lei S J, Wang P, et al. Renewable Energy, 2021, 173, 662. 19 Prajapati R, Kohli K, Maity S K, et al. Molecules, 2021, 26(11), 3175. 20 Park K B, Jeong Y S, Guzelciftci B, et al. Applied Energy, 2020, 259, 114240. 21 Maqsood T, Dai J Z, Zhang Y N, et al. Journal of Analytical and Applied Pyrolysis, 2021, 159, 105295. 22 Fernandez Y, Arenillas A, Menendez A. In:Advances in induction and microwave heating of mineral and organic materials, Grundas S, ed., InTech, Spain, 2011, pp. 752. 23 Soni V K, Singh G, Vijayan B K, et al. Energy & Fuels, 2021, 35, 12763. 24 Lee K H. Journal of Analytical and Applied Pyrolysis, 2009, 85, 372. 25 Dai L L, Karakas O, Cheng Y L,Chemical Engineering Journal, 2023, 453, 139725. 26 Lee S Y, Yoon J H, Kim J R, et al. Polymer Degradation and Stability, 2001, 74, 297. 27 Syamsiro M, Saptoadi H, Norsujianto T, et al. Energy Procedia, 2014, 47, 180. 28 Cao Y Q, Qi F L, Cui H Y, et al. Environmental Science and Pollution Research, 2023, 30, 35853. 29 Geng Y, Dong H J, Xi F M, et al. China Population, Resources and Environment, 2010, 20(10), 6 (in Chinese). 耿涌, 董会娟, 郗凤明, 等. 中国人口·资源与环境, 2010, 20(10), 6. 30 Gui F Z, Ren S D, Zhao Y W, et al. Journal of Cleaner Production, 2019, 236, 117627. 31 Sun Q, Yi A L, Ni H G. Science of the Total Environment, 2021, 791, 148279. 32 Muthu S S, Li Y, Hu J Y, et al. Atmospheric Environment, 2011, 45(2), 469. 33 Chu J W, Zhou Y, Cai Y P, et al. Journal of Cleaner Production, 2022, 330, 129872. 34 Zhao C Z, Huang M C, Liu Y, et al. In: 2015 Materials Science Forum. Switzerland, 2016, pp. 366. 35 Zhou X L, He P J, Peng W, et al. Journal of Analytical and Applied Pyrolysis, 2022, 161, 105421. 36 Genuino H C, Ruiz M P, Heeres H J, et al. Waste Management, 2023, 156, 208. 37 Algozeeb W A, Savas P E, Yuan Z, et al. ACS Nano, 2022, 16, 7284. 38 Zhu Y, Miao J, Long M C, et al. Journal of Analytical and Applied Pyrolysis, 2022, 166, 105613. 39 Acomb J C, Wu C F, Williams P T. Applied Catalysis B: Environmental, 2016, 180, 497. 40 He S, Xu Y K, Zhang Y S, et al. Journal of Hazardous Materials, 2021, 402, 123726. 41 Veksha A, Ahamed A, Wu X Y, et al. Journal of Hazardous Materials, 2022, 421, 126717. 42 Heidari A, Younesi H. Journal of Environmental Chemical Engineering, 2020, 8(2), 103669. 43 Gear M, Sadhukhan J, Thorpe R, et al. Journal of Cleaner Production, 2018, 180, 735. 44 Salem S M, Evangelisti S, Lettieri P. Chemical Engineering Journal, 2014, 244, 391. 45 Benavides P T, Sun P P, Han J W, et al. Fuel, 2017, 203, 11. 46 Falinski M M, Plata D L, Chopra S S, et al. Nature Nanotechnology, 2018, 13, 708. 47 Vikram S, Rosha P, Kumar S. Energy & Fuels, 2021, 35(9), 7406. 48 Zhao X, You F Q. ACS Sustainable Chemistry & Engineering, 2021, 9, 12167. 49 Kawajiri K, Goto T, Sakurai S, et al. Journal of Cleaner Production, 2020, 255, 120015. 50 Ahamed A, Veksha A, Yin K, et al. Journal of Hazardous Materials, 2020, 390, 121449. 51 Azapagic A, Clift R. Computers & Chemical Engineering, 1999, 23(10), 1509. 52 Costa L P, Miranda D, Pinto J C. ACS Sustainable Chemistry & Enginee-ring, 2022, 10, 3799. 53 Bora R R, Wang R, You F Q. ACS Sustainable Chemistry & Engineering, 2020, 8(43), 16350. 54 Tornos A S, Garay A G, Pozo C, et al. ACS Sustainable Chemistry & Engineering, 2020, 8(9), 3561. |
|
|
|