INORGANIC MATERIALS AND CERAMIC MATRIX COMPOSITES |
|
|
|
|
|
Progress of Silicon Carbon Composite Anode Structure for Lithium-ion Batteries |
WU Qiong1,2, XU Yongjie1, ZHONG Zhanxiong1, LIANG Junjie1, LI Yao2,*
|
1 Guangdong Guanghua Technology Co., Ltd., Shantou 515061, Guangdong, China 2 Institute of Composite Materials, School of Astronautics, Harbin Institute of Technology, Harbin 150001, China |
|
|
Abstract Lithium-ion batteries have the advantages of high energy density, good rate performance, long cycle life and low self-discharge rate, and are currently the most important type of mobile energy storage. The anode of commercial batteries is mainly made of graphite, and its theoretical capacity is low, which is the main bottleneck limiting the capacity of lithium-ion batteries. Silicon, on the other hand, is characterized by high theoretical capacity, suitable operating voltage, high natural abundance, etc. Therefore, it is a typical electrode material for the new generation of lit-hium-ion batteries. However, due to the large volume changes of silicon anodes during charging and discharging, low initial Coulombic efficiency, relatively poor electrical conductivity, and unstable solid electrolyte interface, silicon-based anodes have significant stability problems that hinder practical applications. To solve these problems, modifying silicon anodes with carbon is a more commercial approach. In this paper, the silicon/carbon anode materials in recent years are divided into 0D-nanoparticles, 1D-nanowires and nanotubes, 2D-nanosheets and 3D-micron spheres according to the structure and size of silicon materials, and the structures and electrochemical properties of carbon-based silicon/carbon compo-sites are discussed. In addition, the progress and limitations of the existing silicon/carbon composite anodes are summarized and the prospects for industrialization in this field are highlighted.
|
Published:
Online: 2024-06-25
|
|
Fund:Ministry's and National Commission's Scientific Research Project. |
|
|
1 Pfenninger S, Hawkes A, Keirstead J. Renewable and Sustainable Energy Reviews, 2014, 33, 74. 2 Horowitz M. In:IEEE International Solid-State Circuits Conference. San Francisco, CA, USA, 2014, pp. 10. 3 Liu C, Li F, Ma F, et al. Advanced Energy Materials, 2010, 22(8), 28. 4 Winter M, Barnett B, Xu K. Chemical Reviews, 2018, 118(23), 11433. 5 Cheng H, Shapter J G, Li Y Y, et al. Journal of Energy Chemistry, 2021, 57, 451. 6 Xing B, Bao T, Li X, et al. Materials Reports, 2020, 34(15), 15063 (in Chinese). 刑宝林, 鲍倜傲, 李旭升, 等. 材料导报, 2020, 34(15), 15063. 7 Ellabban O, Abu-Rub H, Blaabjerg F. Renewable and Sustainable Energy Reviews, 2014, 39, 748 8 Hill J O, Wyatt H R, Peters J C. Circulation, 2012, 126(1), 126. 9 Joselin H G M, Iniyan S, Sreevalsan E, et al. Renewable and Sustainable Energy Reviews, 2007, 11(6), 1117. 10 Blanco M I. Renewable and Sustainable Energy Reviews, 2009, 13(6-7), 1372. 11 Blomgren G E. Journal of the Electrochemical Society, 2016, 164(1), 5019. 12 Wang Y, Ruan W, Tang R, et al. Materials Reports, 2019, 33(18), 3021 (in Chinese). 王英, 阮威, 唐仁衡, 等. 材料导报, 2019, 33(18), 3021. 13 Liu K, Liu Y Y, Lin D C, et al. Science Advances, 2018, 4(6), eaas9820. 14 Lu Y, Chen J. Nature Reviews Chemistry, 2020, 4(3), 127. 15 Manthiram A. ACS Central Science, 2017, 3(10), 1063. 16 Nayak P K, Yang L T, Brehm W, et al. Angew Chemie International Edition, 2018, 57(1), 102. 17 Xu T, Yan G, Wang K, et al. Micronanoelectronic Technology, 2022, 59(11), 1153 (in Chinese). 徐天齐, 闫工芹, 王康, 等. 微纳电子技术, 2022, 59(11), 1153. 18 Li X, Sun X H, Hu X D, et al. Nano Energy, 2020, 77, 105143. 19 Kubota K, Dahbi M, Hosaka T, et al. Chemical Record, 2018, 18(4), 459. 20 Kim T, Song W T, Son D Y, et al. Journal of Materials Chemistry A, 2019, 7(7), 2942. 21 Choudhury S, Archer L A. Advanced Electronic Materials, 2016, 2(2), 1500246. 22 Zhao L, Wang H, Xie Q, et al. Materials Reports, 2020, 34(7), 7026 (in Chinese). 赵立敏, 王惠亚, 解启飞, 等. 材料导报, 2020, 34(7), 7026. 23 Oda F H, Borteiro C, da Graca R J, et al. Acta Tropica, 2016, 164, 150. 24 Randau S, Weber D A, Kötz O, et al. Nature Energy, 2020, 5(3), 259. 25 Schipper F, Aurbach D. Russian Journal of Electrochemistry, 2016, 52(12), 1095. 26 Shi J, Jiang X S, Ban B Y, et al. Electrochimica Acta, 2021, 381, 138269. 27 Kim H, Cho J. Nano Letters, 2008, 8(11), 3688. 28 Hou G L, Cheng B L, Yang Y J, et al. ACS Nano, 2019, 13(9), 10179. 29 Pan F, Shen L, Tong L, et al. Materials Reports, 2020, 34(Z1), 132 (in Chinese). 潘福森, 沈龙, 童磊, 等. 材料导报, 2020, 34(Z1), 132. 30 Whittingham M S. Nano Letters, 2020, 20(12), 8435. 31 Kraytsberg A, Ein-Eli Y. Advanced Energy Materials, 2016, 6(21), 1600655. 32 Wu F X, Maier J, Yu Y. The Royal Society of Chemistry, 2020, 49(5), 1569. 33 Xin F X, Whittingham M S. Electrochemical Energy Reviews, 2020, 3(4), 643. 34 Yao X Y, Liu D, Wang C S, et al. Nano Letters, 2016, 16(11), 7148. 35 Zuo X X, Zhu J, Müller-Buschbaum P, et al. Nano Energy, 2017, 31, 113. 36 Liu D, Ma J, Gao L, et al. Chinese Journal of Rare Metals, 2022, 46(9), 1125(in Chinese). 刘大进, 麻景淇, 高凌峰, 等. 稀有金属, 2022, 46(9), 1125. 37 Batool S, Idrees M, Kong J, et al. Journal of Alloys and Compounds, 2020, 832, 154644. 38 Hu X Q, Huang S M, Hou X H, et al. Silicon, 2017, 10(4), 1443. 39 Yang Z W, Yang Y, Guo H J, et al. Ionics, 2018, 24, 3405. 40 Xie Q X, Qu S P, Zhao P. Journal of Electroanalytical Chemistry, 2021, 884, 115074. 41 Huang Y H, Li W W, Peng J, et al. Energy & Fuels, 2021, 35(16), 13491. 42 Hou L, Zheng H Y, Cui R W, et al. Microporous and Mesoporous Materials, 2019, 275, 42. 43 An Y L, Tian Y, Wei H, et al. Advanced Functional Materials, 2020, 30(9), 1908721. 44 Liao L X, Ma T, Xiao Y, et al. Journal of Alloys and Compounds, 2021, 873, 159700. 45 Liu H B, Chen Y, Jiang B, et al. Dalton Transactions, 2020, 49(17), 5669. 46 Zeferino G I, Valenzuela-Muñiz A M, Gauvin R, et al. Diamond and Related Materials, 2020, 104, 107743. 47 Wang H, Fu J, Wang C, et al. Energy & Environmental Science, 2020, 13, 848. 48 Han N, Li J, Wang X, et al. Nanomaterials, 2021, 11(3), 699. 49 Gao R S, Tang J, Zhang K, et al. Nano Energy, 2020, 78, 105341. 50 Tong L, Wang P, Fang W Z, et al. ACS Applied Materials & Interfaces, 2020, 12(26), 29242. 51 Cong R, Choi J Y, Song J B, et al. Scientific Reports, 2021, 11(1), 1283. 52 Kim S C, Huang W, Zhang Z, et al. MRS Bulletion, 2022, 2022(47), 127. 53 Jia H P, Li X L, Song J H, et al. Nature Communications, 2020, 11, 1474. 54 Liu F, Liu Y X, Wang E Y, et al. Electrochimica Acta, 2021, 393, 139041. 55 Chae S, Xu Y, Yi R, et al. Advanced Materials, 2021, 33(40), 2103095. 56 Yang Y, Lu Z J, Xia J, et al. Chemical Engineering Science, 2021, 229, 116054. |
|
|
|