INORGANIC MATERIALS AND CERAMIC MATRIX COMPOSITES |
|
|
|
|
|
Development of Nickel Oxide Hole Materials in Ⅱ-Ⅵ Quantum Dot Electroluminescent Devices |
LIN Jian1,*, ZHANG Songlin1, WANG Yuean1, SUN Hao1, NIE Yuchang1, CHEN Desui2,*
|
1 School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, Jiangsu, China 2 Zhejiang Key Laboratory of Excited-State Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, China |
|
|
Abstract Highly efficient group Ⅱ-Ⅵ quantum dot(Ⅱ-Ⅵ QD)electroluminescence(EL)devices have been able to meet the basic commercial requirements, more attention has been paid to the long-term performance (lifetime) of the device. In the Ⅱ-Ⅵ QD EL devices, PEDOT:PSS is easy to absorb moisture and corrode ITO electrodes, which has a negative impact on device lifetime and commercial application potential. Replacing organic PEDOT:PSS with highly stable NiO could avoid the influence of materials on the stability of devices. This manuscript systematically reviews the research progress of NiO hole functional material in Ⅱ-Ⅵ QD EL devices, and focuses on the effects of different preparation methods, doping and interface characteristics of NiO films on the performance of devices. Finally, we made a prospect on the research trend of Ⅱ-Ⅵ QD EL devices based on the metal oxide hole functional layer, which may provide views for the preparation of stable and efficient EL devices at the material and device levels.
|
Published: 25 July 2024
Online: 2024-08-12
|
|
Fund:National Natural Science Foundation of China (22001187), China Postdoctoral Science Foundation (2018M640548), and the Natural Science Research Foundation of Jiangsu Higher Education Institutions (20KJB150032). |
|
|
1 Dai X L, Zhang Z X, Jin Y Z, et al. Nature, 2014, 515(7525), 96. 2 Dai X L, Deng Y Z, Peng X P, et al. Advanced Materials, 2017, 29(14), 1607022. 3 Han C Y, Yang H. Journal of the Korean Ceramic Society, 2017, 54(6), 449. 4 Jin Y Z, Peng X G. Science China Chemistry, 2017, 60(10), 1324. 5 Yuan Q L, Wang T, Yu P L, et al. Organic Electronics, 2021, 90, 106086. 6 Chen Y H, Chen T, Xie Z X, et al. Materials Reports, 2023, 37(10), 21090296. 陈园虹, 陈婷, 谢志翔, 等. 材料导报, 2023, 37(10), 21090296. 7 Colvin V L, Schlamp M C, Alivisatos A P. Nature, 1994, 370(6488), 354. 8 Zhang Z X, Ye Y X, Pu C D, et al. Advanced Materials, 2018, 30(28), 1801387. 9 Cao W R, Xiang C Y, Yang Y X, et al. Nature Communications, 2018, 9(1), 2608. 10 Li X Y, Zhao Y B, Fan F J, et al. Nature Photonics, 2018, 12(3), 159. 11 Chen D S, Chen D, Dai X L, et al. Advanced Materials, 2020, 32(52), 2006178. 12 Liu D Q, Sheng C, Wang S Y, et al. Journal of Physical Chemistry Letters, 2020, 11(8), 3111. 13 Ye Y X, Zheng X R, Chen D S et al. Journal of Physical Chemistry Letters, 2020, 11(12), 4649. 14 Kim T,Kim K H, Kim S, et al. Nature, 2020, 586(7829), 385. 15 Pu C D,Dai X L, Shu Y F, et al. Nature Communications, 2020, 11(1), 937. 16 Lee T,Kim B J, Lee H, et al. Advanced Materials, 2022, 34(4), 2106276. 17 Deng Y Z,Peng F, Lu Y, et al. Nature Photonics, 2022, 16(7), 505. 18 Li Y F,Fan X, Shen C, et al. Advanced Functional Materials, 2022, 32(32), 2203641. 19 Shirasaki Y,Supran G J, Bawendi M G, et al. Nature Photonics, 2013, 7(1), 13. 20 Chen H T, Ding K, Fan L W,et al. Journal of Materials Chemistry C, 2022, 10(21), 8373. 21 Wang S J,Li C R, Xiang Y, et al. Nanoscale Advances, 2020, 2(5), 1967. 22 Hong G,Gan X M, Leonhardt C, et al. Advanced Materials, 2021, 33(9), 2005630. 23 Yang X Y,Mutlugun E, Zhao Y B, et al. Small, 2014, 10(2), 247. 24 Caruge J M,Halpert J E, Bulović V, et al. Nano Letters, 2006, 6(12), 2991. 25 Cao F,Wang H R, Shen P Y, et al. Advanced Functional Materials, 2017, 27(42), 1704278. 26 Kim H S, Kim C K. Molecular Crystals and Liquid Crystals, 2019, 678(1), 33. 27 Ji W Y, Liu S H, Zhang H, et al. ACS Photonics, 2017, 4(5), 1271. 28 Wang T,Zhu B Y, Wang S P, et al. ACS Applied Materials & Interfaces, 2018, 10(17), 14894. 29 Ji W Y, Shen H B, Zhang H,et al. Nanoscale, 2018, 10, 11103. 30 Sun Y Z, Chen W, Wu Y H, et al. Nanoscale, 2019, 11, 1021. 31 Yang X Y,Zhang Z H, Ding T, et al. Nano Energy, 2018, 46, 229. 32 Chen W, Wu Y Z, Yue Y F, et al. Science, 2015, 350, 944. 33 Ma F, Zhao Y, Li J H, et al. Journal of Energy Chemistry, 2021, 52, 393. 34 Zhang H, Cheng J Q, Lin F, et al. ACS Nano, 2016, 10(1), 1503. 35 Subbiah A S, Halder A, Ghosh S, et al. Journal of Physical Chemistry Letters, 2014, 5(10), 1748. 36 Kim J H, Liang P W, Williams S T, et al. Advanced Materials, 2015, 27(4), 695. 37 Jung J W, Chueh C C, Jen A K Y. Advanced Materials, 2015, 27(47), 7874. 38 Zuo L J,Chen Q, Marco N D, et al. Nano Letters, 2017, 17(1), 269. 39 Wang Q,Chueh C C, Zhao T, et al. ChemSusChem, 2017, 10(19), 3794. 40 Steirer K X, Chesin J P, Widjonarko N E, et al. Organic Electronics, 2010, 11(8), 1414. 41 Manders J R, Tsang S W, Hartel M J, et al. Advanced Functional Mate-rials, 2013, 23(23), 2993. 42 Bai S, Cao M T, Jin Y Z, et al. Advanced Energy Materials, 2014, 4(6), 1301460. 43 Liang X Y, Bai S, Wang X, et al. Chemical Society Reviews, 2017, 46(6), 1730. 44 Xu M P,Chen D S, Lin J, et al. Nano Research, 2022,15, 7453. 45 Du H,Ma L Y, Wang X, et al. Chemistry-A European Journal, 2021, 27(44), 11298. 46 Lin J,Dai X L, Liang X Y, et al. Advanced Functional Materials, 2020, 30(5), 1907265. 47 Jiang Y B, Jiang L, Yeung F S Y, et al. ACS Applied Materials & Interfaces, 2019, 11(12), 11119. 48 Zheng C X,Li F S, Zeng Q Y, et al. Thin Solid Films, 2019, 669, 387. 49 Zhang H,Wang S T, Sun X W, et al. Journal of Materials Chemistry C, 2017, 5(4), 817. 50 Fominykh K, Feckl J M, Sicklinger J, et al. Advanced Functional Mate-rials, 2014, 24(21), 3123. 51 Chen Z N, Su Q, Qin Z Y, et al. Nano Research, 2021, 14(1), 320. 52 Su Q, Sun Y Z, Zhang H, et al. Advanced Science, 2018, 5(10), 1800549. 53 Chen D S, Ma L Y, Chen Y H, et al. Nano Letters, 2023, 23(3), 1061. 54 Chen S, Cao W R, Liu T L, et al. Nature Communications, 2019, 10(1), 765. 55 Rhee S, Hahm D, Seok H J, et al. ACS Nano, 2021, 15(12), 20332. 56 Wang F Z,Wang Z Y, Zhu X D, et al. Small, 2021, 17(12), 2007363. 57 Wang L X,Pan J Y, Qian J P, et al. ACS Applied Electronic Materials, 2019, 1(10), 2096. 58 Kim H M, Kim J, Jang J. Nanoscale, 2018, 10(15), 7281. 59 Mashford B S, Nguyen T L, Wilson G J, et al. Journal of Materials Chemistry, 2010, 20(1), 167. 60 Caruge J M,Halpert J E, Wood V, et al. Nature Photonics, 2008, 2(4), 247. 61 Wood V,Panzer M J, Halpert J E, et al. ACS Nano, 2009, 3(11), 3581. 62 Chen W S, Yang S H, Tseng W C, et al. ACS Omega, 2021, 6(20), 13447. 63 Yu Y, Liang Y, Yong J, et al. Advanced Functional Materials, 2022, 32(3), 2106387. 64 Shendre S, Sharma V K, Dang C, et al. ACS Photonics, 2018, 5(2), 480. 65 Kim J, Hahm D, Bae W K, et al. Small, 2022, 18(29), 2202290. 66 Zhang J, Wang J T, Fu Y Y, et al. Journal of Materials Chemistry C, 2014, 2(39), 8295. 67 Jiang F, Choy W C H, Li X C, et al. Advanced Materials, 2015, 27(18), 2930. 68 Chen S C, Kuo T Y, Lin Y C, et al. Thin Solid Films, 2011, 519(15), 4944. 69 Liang X Y, Yi Q, Bai S, et al. Nano Letters, 2014, 14(6), 3117. 70 Ratcliff E L, Meyer J, Steirer K X, et al. Chemistry of Materials, 2011, 23(22), 4988. 71 Steirer K X, Ndione P F, Widjonarko N E, et al. Advanced Energy Materials, 2011, 1(5), 813. 72 Islam R, Chen G, Ramesh P, et al. ACS Applied Materials & Interfaces, 2017, 9(20), 17201. 73 Sharma A, Kippelen B, Hotchkiss P J, et al. Applied Physics Letters, 2008, 93(16), 163308. 74 Yip H L, Hau S K, Baek N S, et al. Advanced Materials, 2008, 20(12), 2376. 75 Paniagua S A,Giordano A J, Smith O L, et al. Chemical Reviews, 2016, 116(12), 7117. 76 Hotchkiss P J,Jones S C, Paniagua S A, et al. Accounts of Chemical Research, 2012, 45(3), 337. 77 Hietzschold S,Hillebrandt S, Ullrich F, et al. ACS Applied Materials & Interfaces, 2017, 9(45), 39821. 78 Peng W, Mao K T, Cai F C, et al. Science, 2023, 379, 683. 79 Li C W, Wang X M, Bi E B, et al. Science, 2023, 379, 690. |
|
|
|