METALS AND METAL MATRIX COMPOSITES |
|
|
|
|
|
The Third Brittle Region and Its Mechanism Analysis of IF Steel Slab Used in Automobile |
AI Songyuan, WANG Kai, LONG Mujun*, ZHANG Haohao, CHEN Dengfu, DUAN Huamei
|
College of Materials Science and Engineering, Chongqing University, Chongqing 400030, China |
|
|
Abstract Exploring the third brittle region of continuous casting slab and its mechanism plays an important guiding role in avoiding slab cracks and effectively regulating slab properties. The high-temperature mechanical properties of interstitial-free steel (IF) slab for automobiles have been studied by using Gleeble thermal/mechanical simulation testing machine. Combined with thermal expansion test and microstructure analysis, the formation mechanism of the third brittle region of IF steel slab has been explored. The results show that the IF steel has excellent thermoplasticity, the temperature range of the third brittle region is 850—950 ℃, the second cooling low ductility zone is 875—925 ℃, and the tensile strength and yield strength above 1 250 ℃ are lower than 30 MPa and 20 MPa, respectively. From the perspective of deformation and stress, the temperature of the straightening zone should be controlled between 950 and 1 250 ℃. The content of the second phase reaches the highest level around 950 ℃, which is mainly composed of a large amount of micron-sized TiN and a small amount of composite second phases of TiN and MnS, which lead to a decrease in thermoplasticity. This combined effect, which a large number of micron-sized second phases, deformation-induced ferrite near the Ae3 temperature, and austenite decomposition in the Aff—Ar3 temperature range, is the root cause of the third brittle region of the IF steel slab. The IF steel second cooling low ductility zones under different cooling rates can be calculated according to Tα40%(CR)—Ae3.
|
Published: 25 July 2024
Online: 2024-08-12
|
|
Fund:National Natural Science Foundation of China (51874059). |
|
|
1 Wang X J, Cai K K, Dang Z J, et al. Journal of University of Science and Technology Beijing, 1992(1), 28 (in Chinese). 王学杰, 蔡开科, 党紫九, 等. 北京科技大学学报, 1992(1), 28. 2 Thomas B G, Brimacombe J K, Samarasekera I V. ISS Trans, 1986, 7(10), 7. 3 Luo D Q, Xie F M, Wang Z G, et al. Materials Reports, 2016, 30(12), 90 (in Chinese). 罗迪强, 谢飞鸣, 汪志刚, 等. 材料导报, 2016, 30(12), 90. 4 Ai S Y, Long M J, Zhang M Y, et al. Iron Steel, 2019, 54(8), 194 (in Chinese). 艾松元, 龙木军, 张梦远, 等. 钢铁, 2019, 54(8), 194. 5 Li L, Du Y Z, Wang Q Z, et al. China Metallurgy, 2021, 31(4), 32 (in Chinese). 李丽, 杜一哲, 汪勤政, 等. 中国冶金, 2021, 31(4), 32. 6 Chen D F, Gao X J, Wang Q M, et al. The Chinese Journal of Process Engineering, 2009, 9(S1), 210 (in Chinese). 陈登福, 高兴健, 王启明, 等. 过程工程学报, 2009, 9(S1), 210. 7 Xu L J, Qiu C G, Zhang S L. Materials Reports, 2017, 31(S2), 340 (in Chinese). 徐李军, 邱春根, 张淑兰. 材料导报, 2017, 31(S2), 340. 8 Xiong Z Q, Xu G, Yuan Q. Journal of Wuhan University of Science and Technology, 2020, 43(1), 15 (in Chinese). 熊志强, 徐光, 袁清. 武汉科技大学学报, 2020, 43(1), 15. 9 Fang L, Xiao J, Li X, et al. Journal of Iron and Steel Research, 2022, 34(8), 859 (in Chinese). 樊雷, 肖娟, 李显, 等. 钢铁研究学报, 2022, 34(8), 859. 10 Qin F C, Qi H P, Li Y T, et al. Materials Reports, 2020, 34(12), 12132 (in Chinese). 秦芳诚, 齐会萍, 李永堂, 等. 材料导报, 2020, 34(12), 12132. 11 Mintz B. ISIJ International, 1999, 39(9), 833. 12 Cai K K. Continuous Casting, 1994(4), 42 (in Chinese). 蔡开科. 连铸, 1994(4), 42. 13 Mintz B, Abushosha R, Jonas J J. ISIJ International, 1992, 32(2), 241. 14 Mintz B. Materials Science and Technology, 2008, 24(1), 112. 15 Mintz B, Lewis J, Jonas J J. Materials Science and Technology, 1997, 13(5), 379. 16 Maehara Y, Ohmori Y. Materials Science and Engineering, 1984, 62(1), 109. 17 Dong Z H. Evolution of steel property in continuous casting and its ab initio investigations for Fe matrix at elevated temperatures. Ph. D. Thesis, Chongqing University, China, 2016 (in Chinese). 董志华. 高温连铸过程钢的性能演化及 Fe 基体相性能的第一性原理研究. 博士学位论文, 重庆大学, 2016. 18 Wan X L, Wu K M, Huang G, et al. International Journal of Minerals, Metallurgy and Materials, 2014, 21(9), 878. 19 Liu T, Chen D F, Long M J, et al. Metal Science and Heat Treatment, 2020, 61(9-10), 534. 20 Liu T, Long M J, Gui L T, et al. Journal of Iron and Steel Research International, 2018, 25(10), 1043. 21 Delu L, Jie F, Yong L K, et al. Journal of Materials Science and Techno-logy 2009, 18(1), 5. 22 Santillana M B. Thermo-mechanical properties and cracking during solidification of thin slab cast steel. Ph. D. Thesis, Delft University of Techno-logy, Netherlands, 2013. 23 Liu T, Long M J, Chen D F, et al. Journal of Materials Research, 2018, 33, 967. 24 Dong Z H, Chen D F, Long M J, et al. Metallurgical and Materials Transactions B, 2016, 47(3),1553. 25 Long M J, Dong Z H, Chen D F, et al. Chinese Journal of Engineering, 2015, 37(4), 441 (in Chinese). 龙木军, 董志华, 陈登福, 等. 工程科学学报, 2015, 37(4), 441. 26 Long M J, Dong Z H, Chen D F, et al. Ironmaking & Steelmaking, 2015, 42(4), 282. 27 Ghosh C, Aranas J C, Jonas J J. Progress in Materials Science, 2016, 82, 151. 28 Mintz B, Cowley A. Materials Science and Technology, 2006, 22(3), 279. 29 Liu Z X, Li D Z, Qiao G W. Acta Metallurgica Sinica, 2005, 41(11), 19 (in Chinese). 刘朝霞, 李殿中, 乔桂文. 金属学报, 2005, 41(11), 19. 30 Wang Q, Yang Z M, Wu C J. Journal of Iron and Steel Research, 2009, 21(3), 27 (in Chinese). 王倩, 杨忠民, 吴春京. 钢铁研究学报, 2009, 21(3), 27. 31 Ai S Y, Long M J, Yang X H, et al. Journal of Materials Research and Technology, 2023, 22, 1103. 32 Cardoso G I S L, Mintz B, Yue S. Ironmaking & Steelmaking, 1995, 22(5), 365. |
|
|
|