POLYMERS AND POLYMER MATRIX COMPOSITES |
|
|
|
|
|
Efficiently Remove Tannic Acid from Aqueous Solution by MIL-101(Cr)-NH2 Based on the Synergistic Effect of Electrostatic and Complexation Interaction |
LI Yunlong1, LIU Yixian1, LIU Miao1, HAN Jilong1, ZHOU Lilong1, LI Zhengjie1,*, YUN Jimmy1,2, LIU Runjing1
|
1 School of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China 2 Chuangqi Times (Qingdao) Technology Co., Ltd., Qingdao 266041, Shandong, China |
|
|
Abstract An amino-functionalized MIL-101(Cr) (namely MIL-101(Cr)-NH2) was prepared by hydrothermal method and its adsorption performance of tannic acid in aqueous solution was investigated by batch experiments. The structure and morphology of MIL-101(Cr)-NH2 were characterized through powder X-ray diffraction instrument (XRD), scanning electron microscope (SEM), Fourier transform infrared spectroscopy (FTIR) and nitrogen adsorption-desorption isotherms. The effects of initial pH, adsorption time, initial concentration and ion strength on the adsorption performance of tannic acid were explored and the adsorption mechanism was studied. The adsorption capacity of tannic acid onto MIL-101(Cr)-NH2 gradually increased with the increasing pH value and the optimal pH value was 7.0. The pseudo-second-order kinetic model, Freundlich model, and Temkin model fitted the adsorption data well, which indicated that tannic acid was adsorbed onto MIL-101(Cr)-NH2 by multilayer adsorption and the adsorption process was dominated by chemisorption. The fitting results of diffusion models suggested that film diffusion and intra-particle diffusion affected the adsorption process together. At T=303 K and pH=7, the equilibrium adsorption capacity of MIL-101(Cr)-NH2 was up to 2 031 mg/g. The main mechanism controlling the adsorption of tannic acid onto MIL-101(Cr)-NH2 are the electrostatic interaction and Cr-O complexation interaction.
|
Published: 25 July 2024
Online: 2024-08-12
|
|
Fund:Natural Science Foundation of Hebei Province (B2020208095), Youth Found of Education Department of Hebei Province (QN2022142), and Qinghai Haixi Science and Technology Bureau (Enterprise Innovation Fund Program 2019-104). |
|
|
1 Pan F, Li A M, Shuang C D, et al. Technology of Water Treatment, 2012, 38(5), 7 (in Chinese). 潘菲, 李爱民, 双陈冬, 等. 水处理技术,2012, 38(5), 7. 2 Agarwal S, Rajoria P, Rani A. Journal of Environmental Chemical Engineering, 2018, 6, 1486. 3 Zhang C S, Zhang K F, Chi J. Chinese Journal of Environmental Engineering, 2004(6), 36 (in Chinese). 张朝升, 张可方, 迟军. 环境污染治理技术与设备, 2004(6), 36. 4 Lu Y, Liang J K, Wang H Y, et al. Journal of Hazardous Materials, 2022, 425, 127827. 5 Pei L Y, Zhu H X, Hou Y P, et al. Journal of Shaanxi University of Science & Technology, 2021, 39 (5), 14 (in Chinese). 裴立影, 朱红霞, 侯银萍, 等. 陕西科技大学学报, 2021, 39 (5), 14. 6 Fei P, Zhao S J, Chen X, et al. Food & Machinery, 2019, 35(7), 226 (in Chinese). 费鹏, 赵胜娟, 陈曦, 等. 食品与机械, 2019, 35(7), 226. 7 Wei W, Li J S, Han X, et al. Science of the Total Environment, 2021, 778, 146189. 8 Cañizares P, Pérez Á, Camarillo R, et al. Desalination, 2006, 200, 310. 9 Mansouri K, Elsaid K, Bedoui A, et al. Chemical Engineering Journal, 2011, 172, 970. 10 Zhou Y A, Xing X H, Liu Z H, et al. Chemosphere, 2008, 72, 290. 11 Sarıcı-Özdemir Ç, Önal Y. Desalination, 2010, 251, 146. 12 Xue Z H, Li Y, Mi Q, et al. New Chemical Materials, 2016, 44(4), 179 (in Chinese). 薛泽慧, 李裕, 米琴, 等. 化工新型材料, 2016, 44(4), 179. 13 Wang J H, Liu S C. Journal of Shaanxi University of Science & Technology, 2015, 33(1), 25 (in Chinese). 王家宏, 刘少冲. 陕西科技大学学报, 2015, 33(1), 25. 14 Wang J H, Zheng S R, Liu J L, et al. Chemical Engineering Journal, 2010, 165, 10. 15 Zhou Y, Wang J N, Xu L, et al. Ion Exchange and Adsorption, 2010, 26(3), 202 (in Chinese). 周扬, 王津南, 许丽, 等. 离子交换与吸附, 2010, 26(3), 202. 16 Kumar R, Barakat M A, Soliman E M. Journal of Industrial and Engineering Chemistry, 2014, 20(5), 2992. 17 Sun Y, Diao B X. Water Purification Technology, 2012, 31(4), 109 (in Chinese). 孙瑛, 刁炳祥. 净水技术, 2012, 31(4), 109. 18 Yaghi O M, O'Keeffe M, Ockwig N W, et al. Nature, 2003, 423(6941), 705. 19 Zhao X D, Zheng M Q, Gao X L, et al. Coordination Chemistry Reviews, 2021,440, 213970. 20 Zhao Y J, Zhao H F, Wang T, et al. Chemical Industry and Engineering Progress, 2020, 39(6), 2187 (in Chinese). 赵英杰, 赵慧芳, 王婷, 等. 化工进展, 2020, 39(6), 2187. 21 Dhaka S, Kumar R, Deep A, et al. Coordination Chemistry Reviews, 2019, 380, 330. 22 Guo X Y , Kang C F, Huang H L, et al. Microporous and Mesoporous Materials, 2019, 286, 84. 23 Gao X L, Zheng M Q, Zhao X D, et al. Journal of Chemical Engineering Data, 2020, 66(1), 669. 24 Wang X, Meng L Y, Dai Y, et al. Acta Scientiae Circumstantiae, 2013, 33(8), 2193 (in Chinese). 王雪, 孟令友, 代莹, 等. 环境科学学报, 2013, 33(8), 2193. 25 Wu D, Jiang J L, Xu Y, et al. Journal of Huaiyin Institute of Technology, 2014, 23(1), 5 (in Chinese). 吴典, 蒋金龙, 许莹, 等. 淮阴工学院学报, 2014, 23(1), 5. 26 Lin Y C, Kong C L, Chen L. RSC Advances, 2012, 2(16), 6417. 27 Côté A P, Benin A I, Ockwig N W, et al. Science, 2005, 310(5751), 1166. 28 Han G, Qian Q H, Rodriguez K M, et al. Industrial & Engineering Chemistry Research, 2020, 59(16), 7888. 29 Dapaah M F, Liu B, Cheng L. Journal of Environmental Chemical Engineering, 2021, 9(4), 105275. 30 Wahyono T, Astuti D A, Wiryawan I K G, et al. IOP Conference Series: Materials Science and Engineering, 2019, 546(4), 042045. 31 Yu N J, Wang H L, Zhu Z L, et al. Chinese Journal of Environmental Engineering, 2015, 9(10), 4753 (in Chinese). 于年吉, 王海玲, 朱兆连, 等. 环境工程学报,2015, 9(10), 4753. 32 Liu J R, Wei Y, Chang M, et al. AIChE Journal, 2022, 68(2), e17522. 33 Yue L, Zhang Y, Zhang W L, et al. Chinese Journal of Environmental Engineering, 2019, 13(11), 2553 (in Chinese). 岳琳, 张迎, 张文丽, 等. 环境工程学报, 2019, 13(11), 2553. 34 Elaiwi F A, Sirkecioglu A. Separation Science and Technology, 2020, 55(18), 3362. 35 Yu F, Li Y, Huang G Q, et al. Chemosphere, 2020, 260, 127650. 36 Xu M M, Bao W Q, Xu S P, et al.BioResources, 2016, 11(1), 8. 37 Wu C C, Xiao Y, Wu C, et al. Industrial Water Treatment, 2020, 40(2), 63 (in Chinese). 吴成晨, 肖瑜, 吴川, 等. 工业水处理, 2020, 40(2), 63. 38 Jiang B H, Lin J W, Zhan Y H, et al. Environmental Science, 2017, 38(6), 2400 (in Chinese). 姜博汇, 林建伟, 詹艳慧, 等. 环境科学, 2017, 38(6), 2400. 39 Yang X M, Wang W, Xie Q D. The Chinese Journal of Process Enginee-ring, 2022, 22(11), 1512 (in Chinese). 杨秀敏, 王文, 谢琼丹. 过程工程学报, 2022, 22(11), 1512. 40 Zhang Y X, Ruan Q Q, Peng Y G, et al. Journal of Colloid and Interface Science, 2018, 525, 39. 41 Wang J H, Zheng C L, Ding S L, et al. Desalination, 2011, 273(2-3), 285. 42 Huang J H, Song Z H, Jin Q Z, et al. Science and Technology of Food Industry, 2010, 31(12), 255 (in Chinese). 黄健花, 宋志华, 金清哲, 等. 食品工业技术, 2010, 31(12), 255. 43 Wang J N, Zhou Y, Li A M, et al. Acta Polymerica Sinica, 2010(1), 96 (in Chinese). 王津南, 周扬, 李爱民, 等. 高分子学报, 2010(1), 96. 44 Wu J, Chen J. Journal of Applied Polymer Science, 2013, 127(3), 1765. 45 He Z Q, Cheng Z Q, Kang L J, et al. Food Science, 2015, 36(1), 104 (in Chinese). 何中秋, 程志强, 康立娟, 等. 食品科学, 2015, 36(1), 104. 46 Lee Y C, Lee D J, Cheng C C. Journal of the Taiwan Institute of Chemical Engineers, 2018, 93, 124. 47 Sun C C, Xiong B W, Pan Y, et al. Journal of Colloid and Interface Science, 2017, 487, 175. 48 Wang J N, Li A M, Xu L, et al. Chemical Journal of Chinese Universities, 2009, 30(5), 1046 (in Chinese). 王津南, 李爱民, 许丽, 等. 高等学校化学学报, 2009, 30(5), 1046. 49 Li Z Y. Chemical treatment of minerals, Metallurgical Industry Press, China, 2015 (in Chinese). 李正要. 矿物化学处理, 冶金工业出版社, 2015. 50 Li Z J, Ma M Y, Zhang S S, et al. Journal of Porous Materials, 2019, 27(1), 189. 51 Jin T, Yang Q, Meng C, et al. RSC Advances, 2014, 4(79), 41902. |
|
|
|