INORGANIC MATERIALS AND CERAMIC MATRIX COMPOSITES |
|
|
|
|
|
Preparation and Properties of CO2 Driven Magnesium Slag-based 3D Printing Materials |
HUANG Shuai1, ZHANG Wenqin2, LIU Zhichao1,3,*, WANG Fazhou3
|
1 School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China 2 Research Center of Silicate Materials Engineering, Wuhan University of Technology, Wuhan 430070, China 3 State Key Laboratory of Silicate Materials for Architectures (Wuhan University of Technology), Wuhan 430070, China |
|
|
Abstract Magnesium slag is an industrial solid waste containing a large amount of dicalcium silicate with poor hydration activity and good carbonation activity. A preparation method of magnesium slag-based 3D printing material is proposed. The method uses magnesium slag with high carbonation activity as the main cementitious component, and silica fume, water and superplasticizer are added to prepare printable paste with adjustable rheology. After printing, 3D printing samples with excellent mechanical strength can be obtained in a short time through pre-drying and CO2 curing. The influence of carbonation curing conditions on the mechanical properties and microstructure of printed samples was investigated. Results show that, a proper pre-drying is beneficial to the carbonation strength. After pre-drying to 0.05 water to solid ratio before carbonation curing, then CO2 curing for 3h at 0.3 MPa, the compressive strength of the printed sample reaches 48.8 MPa; the densification of microstructure and the formation of calcite are the main reasons for the rapid strength gain of printed sample after CO2 curing.
|
Published: 10 October 2023
Online: 2023-09-28
|
|
Fund:National Natural Science Foundation of China (U2001227). |
|
|
1 Zhang W B, Zhang F S. China Environmental Science, 2021, 41(5), 2299 (in Chinese). 张婉冰, 张付申. 中国环境科学, 2021, 41(5), 2299. 2 Liang D, He R J, Fang D N. Advanced Ceramics, 2017, 38(4), 231 (in Chinese). 梁栋, 何汝杰, 方岱宁. 现代技术陶瓷, 2017, 38(4), 231. 3 Ji H C, Zhang X J, Pei W C, et al. Journal of Materials Engineering, 2018, 46(7), 19 (in Chinese). 纪宏超, 张雪静, 裴未迟, 等. 材料工程, 2018, 46(7), 19. 4 Li Y Y, Si Y H, Xiong X B, et al. Journal of the Chinese Ceramic Society, 2017, 45(6), 793 (in Chinese). 李亚运, 司云晖, 熊信柏, 等. 硅酸盐学报, 2017, 45(6), 793. 5 Mu Y D, Liu Z C, Wang F Z, et al. Construction and Building Materials, 2018, 177, 322. 6 Mu Y D, Liu Z C, Wang F Z. ACS Sustainable Chemistry & Engineering, 2019, 7(7), 7058. 7 Mu Y D, Xue G R, Zhao S X, et al. Journal of the Chinese Ceramic Society. 2017, 45(8), 1197 (in Chinese). 穆元冬, 雪高瑞, 赵思雪, 等. 硅酸盐学报, 2017, 45(8), 1197. 8 Zhao S X, Liu Z C, Wang F Z, et al. ACS Sustainable Chemistry & Engineering, 2021, 9(19), 6673. 9 Li Y L, Liang P X, Fan Y, et al. Environmental Chemistry, 2015, 34(11), 2077 (in Chinese). 李咏玲, 梁鹏翔, 范远, 等. 环境化学, 2015, 34(11), 2077. 10 Yang W. Research & Application of Building Materials, 2011(9), 11 (in Chinese). 杨伟. 建材技术与应用, 2011(9), 11. 11 Duan L P, Kou B D, Ji K D, et al. Thermal Power Generation, 2016, 45(1), 82 (in Chinese). 段丽萍, 寇斌达, 姬克丹, 等. 热力发电, 2016, 45(1), 82. 12 Xiao L G, Luo F, Wang S Y, et al. New Building Materials, 2011(7), 21 (in Chinese). 肖力光, 雒锋, 王思宇, 等. 新型建筑材料, 2011(7), 21. 13 Mo L W, Hao Y Y, Liu Y P, et al. Cement and Concrete Research, 2019, 121, 81. 14 刘志超, 张志鹏, 王发洲, 等. 中国专利, CN113816668AP, 2021. 15 Moeini M A, Hosseinpoor M, Yahia A. Construction and Building Materials, 2020, 257, 119551. 16 Paul S C, Tay Y W D, Panda B, at al. Archives of Civil and Mechanical Engineering, 2018, 18(1), 311. 17 Jiao D W, Shi C J, Yuan Q, et al. Cement and Concrete Composites, 2017, 83, 146. 18 Kovler K, Roussel N. Cement and Concrete Research, 2011, 41(7), 775. 19 Ma K L, Long G C, Xie Y J, et al. Journal of the Chinese Ceramic Society, 2013, 41(5), 582 (in Chinese). 马昆林, 龙广成, 谢友均, 等. 硅酸盐学报, 2013, 41(5), 582. 20 Zhan B J, Xuan D X, Poon C S, et al. Cement and Concrete Composites, 2016, 71, 122. 21 Steinour H H. Journal American Concrete Institute, 1959, 30, 905. 22 Chen M X, Li L B, Zheng Y, et al. Construction and Building Materials, 2018, 189, 601. 23 Ou Z H, Liu G, Huang C H, et al. Materials Reports, 2016, 30(14), 135 (in Chinese). 欧志华, 刘广, 黄春华, 等. 材料导报, 2016, 30(14), 135. 24 Wang Y L, Shan J H, Zhou M K, et al. Housing Materials & Application, 2005(4), 36 (in Chinese). 王雨利, 单俊鸿, 周明凯, 等. 房材与应用, 2005(4), 36. 25 Ma B G, Peng Y, Tan H B, et al. Construction and Building Materials, 2018, 160, 341. 26 Wang P P, Zhao G R, Zhang G F. Journal of the Chinese Ceramic Society, 2017, 45(8), 1190 (in Chinese). 王培铭, 赵国荣, 张国防. 硅酸盐学报, 2017, 45(8), 1190. 27 Mu Y D. Carbonation-induced hardening mechanism of calcium silicate minerals and the performance-enhancing strategies of the carbonated materials. Ph. D. Thesis, Wuhan University of Technology, China, 2019 (in Chinese). 穆元冬. 硅酸钙矿物碳酸化固化机理及其材料性能提升机制研究. 博士学位论文, 武汉理工大学, 2019. 28 Liu Z C, Zeng H M, Wang F Z. Construction and Building Materials, 2021, 291, 123317. 29 Zhang Y L, Zhao Q L, Liu C Q, et al. Construction and Building Mate-rials, 2016, 102, 648. 30 Ou Z H, Ma B G, Jian S W, et al. Bulletin of the Chinese Ceramic Society, 2016, 35(8), 2371 (in Chinese). 欧志华, 马保国, 蹇守卫, 等. 硅酸盐通报, 2016, 35(8), 2371. 31 Mo L W, Panesar D K. Cement and Concrete Composites, 2013, 43, 69. 32 Ou Z H, Ma B G, Jian S W. Journal of Building Materials, 2013, 16(1), 121 (in Chinese). 欧志华, 马保国, 蹇守卫. 建筑材料学报, 2013, 16(1), 121. |
|
|
|