SURFACE ENGINEERING MATERIALS AND TECHNOLOGY |
|
|
|
|
|
Progress on the Design and Preparation of Bioinspired Slippery Surface |
FAN Haifeng1, GUO Zhiguang1,2
|
1 School of Materials Science and Engineering, Hubei University, Wuhan 430062, China 2 State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China |
|
|
Abstract Inspired by the Nepenthes pitcher in nature, the slippery liquid-infused porous surfaces (SLIPS) are prepared by injecting the low surface energy liquids into the rough substrate, forming a stable and continuous solid/liquid composite film, which isolates the substrate from direct contact with the ambient fluid. Due the low surface energy of the lubricating oil layer, various liquids with different surface tensions slide on the slippery surface with little resistance, and it is difficult to infiltrate and adhere to the surface. Based on these characteristics, the slippery surfaces have a wide range of applications in anti-corrosion, anti-icing/anti-frosting, self-cleaning, antibacterial, anti-microbial adhesion and so on. However, due to the fluid characteristics of the lubricating oil, the slippery surfaces will inevitably face the problem of lubricating oil loss in practical applications, eventually leading to the failure of slippery performance. Therefore, it is of great significance to improve the stability and durability of slippery surface. In recent years, in order to reduce the loss of lubricating oil, a lot of research about the construction of rough structure, selection of modifiers and lubricating oil have been done from the design and preparation of slippery surface, which have achieved fruitful results. In this review, we mainly focus on how to design and prepare slippery surface with good stability and durability to prolong the longevity of slippery surface. Firstly, the design principles of slippery surfaces are introduced briefly. Then, the effects of rough structure, the properties of modifier and lubricating oil on the stability of slippery surface are reviewed in detail from the design and preparation of liquid-infused slippery surface. After that, the preparation process of solid slippery surface is summarized as well as the problems faced. Finally, the development prospects are reviewed in the hope that the review will provide reference for the preparation of slippery surface with excellent stability and durability.
|
Published:
Online: 2022-04-07
|
|
Fund:National Natural Science Foundation of China (51735013). |
|
|
1 Barthlott W, Neinhuis C. Planta, 1997, 202, 1.
2 Neinhuis C, Barthlott W. Annals of Botany, 1997, 79, 667.
3 Feng L, Li S, Li Y, et al. Advanced Materials, 2002, 14, 24.
4 Feng L, Li S H, Li H J, et al. Angewandate Chemie-International Edition, 2002, 41(7), 1269.
5 Li M, Zhai J, Liu H, et al. The Journal of Physical Chemistry B, 2003, 107, 9954.
6 Ren S, Yang S, Zhao Y, et al. Surface Science, 2003, 546, 64.
7 Hozumi A, Takai O. Thin Solid Films, 1997, 303 (1-2), 222.
8 Zeng Q, Zhou H, Huang J, et al. Nanoscale, 2021, 13, 11734.
9 Hwang B G, Page K, Patir A. ACS Nano, 2018, 12(6), 6050.
10 Wang S, Liu K, Yao X, et al. Chemical Reviews, 2015, 115, 8230.
11 Bohn H F, Federle W. PNAS, 2004, 101(39), 14138.
12 Wong T, Kang S H, Tang S K Y, et al. Nature, 2011, 477(7365), 443.
13 Howell C, Vu T L, Lin J J, et al. ACS Applied Materials & Interfaces, 2014, 6(15), 13299.
14 Solomon B, Khalil K S, Varanasi K K,Langmuir, 2014, 30(36), 10970.
15 Wang Y, Zhang H, Liu X, et al. Journal of Materials Chemistry A, 2016, 4, 2524.
16 Manabe K, Kyung K H, Shiratori S. ACS Applied Materials & Interfaces, 2015, 7(8), 4763.
17 Mana U, Lynn D M. Advanced Materials, 2015, 27(19), 3007.
18 Wang J, Kato K, Blois A P, et al. ACS Applied Materials & Interfaces, 2016, 8(12), 8265.
19 Rowthu S, Hoffmann P. ACS Applied Materials & Interfaces, 2018, 10(12), 10560.
20 Wong W S Y, Hegner K I, Donadei V, et al. Nano Letters, 2020, 20(12), 8508.
21 Liu C, Li Y, Lu C, et al. ACS Applied Materials & Interfaces, 2020, 12, 25471.
22 Long Y, Yin X, Mu P, et al. Chemical Engineering Journal, 2020, 401, 126137.
23 Zhang H, Chen G, Yu Y, et al. Advanced Sciences, 2020, 7(16), 2000789.
24 Chen T, Lin Y, Chien C, et al. Advanced Functional Materials, 2021, 32(42), 2104173.
25 Luo X, Lai H, Cheng Z, et al. Chemical Engineering Journal, 2021, 403, 126356.
26 Maji K, Das A, Dhar M, et al. Journal of Materials Chemistry A, 2020, 8, 25040.
27 Villegas M, Zhang Y, Jarad N A, et al. ACS Nano, 2019, 12(8), 8517.
28 Li J, Ueda E, Paulssen D, et al. Advanced Functional Materials, 2019, 29, 1802317.
29 Sett S, Yan X, Barac G, et al. ACS Applied Materials & Interfaces, 2017, 9(41), 36400.
30 Preston D J, Song Y, Lu Z, et al. ACS Applied Materials & Interfaces, 2017, 9(48), 42383.
31 Smith J D, Dhiman R, Anand S, et al. Soft Matter, 2013, 9, 1772.
32 Schellenberger F, Xie J, Encinas N, et al. Soft Matter, 2015, 11, 7617.
33 Tuo Y, Zhang H, Chen W, et al. Applied Surface Science, 2017, 423, 365.
34 Luo H, Yin S, Huang S, et al. Applied Surface Science, 2019, 470, 1139.
35 Gao X, Guo Z. Journal of Colloid and Interface Science, 2018, 512, 239.
36 Sun J, Wang C, Song J, et al. Journal of Materials Science, 2018, 53, 16099.
37 Qian B, Shen Z. Langmuir, 2005, 21, 9007.
38 Liu J, Huang X, Li Y, et al. Journal of Materials Chemistry, 2006, 16, 4427.
39 Washo B D. Orangic Coat and Applied Polymer Science Proceed, 1982, 47, 69.
40 Woodward I, Schofield W C E, Roucoules V, et al. Langmuir, 2003, 19, 3432.
41 Coulson S R, Woodward I, Badyal J P S. Journal of Physical Chemistry B, 2000, 104, 8836.
42 Youngblood J P, McCarthy T J. Macromolecules, 1999, 32(20), 6800.
43 Binh N T, Hanh V T H, Ngoc N T, et al. Materials Chemistry and Phy-sics, 2021, 265, 124502.
44 Subramanyam S B, Azimi G, Varanasi K K. Advanced Materials Interfaces, 2014, 1, 1300068.
45 Doll K, Fadeeva E, Schaeske J. ACS Applied Materials & Interfaces, 2017, 9, 9359.
46 Yong J, Huo J, Yang Q, et al. Advanced Materials Interfaces, 2018, 5, 1701479.
47 Dong Z, Schumann M F, Hokkanen M J, et al. Advanced Materials, 2018, 30, 1803890.
48 Fang Y, Yong J, Cheng Y, et al. Advanced Materials Interfaces, 2021, 8, 2001334.
49 He W, Liu P, Jiang J, et al. Journal of Materials Chemistry A, 2018, 6, 4199.
50 Zhang P, Zhang L, Chen H, et al. Advanced Materials, 2017, 29, 1702995.
51 Wang P, Li T, Zhang D. Corrosion Science, 2017, 128, 110.
52 Gou X, Guo Z. Langmuir, 2020, 36, 8983.
53 Wang C, Yan Y, Du D, et al. ACS Applied Materials & Interfaces, 2020, 12, 29767.
54 Jing X, Guo Z. ACS Applied Materials & Interfaces, 2019, 11(39), 35949.
55 Zhang J, Wang A, Seeger S. Advanced Functional Materials, 2014, 24, 1074.
56 Zhang M, Liu Q, Chen R, et al. Journal of Alloys and Compounds, 2018, 764, 730.
57 He X, Lou T, Yang Z, et al. Applied Surface Science, 2021, 543, 148848.
58 Tadanaga K, Katata N, Minami T. Journal the American Ceramic Society, 1997, 80(4), 1040.
59 Tadanaga K, Morinaga J, Matsuda A, et al. Chemistry of Materials, 2000, 12, 590.
60 Wei C, Zhang G, Zhang Q, et al. ACS Applied Materials & Interfaces, 2016, 8(50), 34810.
61 Zhu G H, Cho S, Zhang H, et al. Langmuir, 2018, 34, 4722.
62 Manna U, Raman N, Welsh M A, et al. Advanced Functional Materials, 2016, 26, 3599.
63 Coustet M, Irigoyen J, Irigoyen T A, et al. Journal of Colloid and Interface Science, 2014, 421, 132.
64 Sunny S, Vogel N, Howell C, et al. Advanced Functional Materials, 2014, 24, 6658.
65 Tsuge Y, Moriya T, Moriyama Y, et al. ACS Applied Materials & Interfaces, 2017, 9, 15122.
66 Sun W, Wang L, Yang Z, et al. Corrosion Science, 2017, 128, 176.
67 Zhuang A, Liao R, Lu Y, et al. ACS Applied Materials & Interfaces, 2017, 9, 42327.
68 Tan J, Ho J, An Z, et al. International Journal of Electrochemical Science, 2017, 12, 40.
69 Yang S, Qiu R, Song H, et al. Applied Surface Science, 2015, 328, 491.
70 Liu M, Hou Y, Li J, et al. Chemical Engineering Journal, 2018, 337, 462.
71 Wang J, Chen X, Kang Y, et al. Applied Surface Science, 2010, 257, 1473.
72 Hanh V T H, Truong M X, Nguyen T B. Cold Regions Science and Technology, 2021, 186, 103280.
73 Yuan S, Zhang X, Liu D, et al. Progress in Organic Coatings, 2020, 142, 105563.
74 Feng J, Zhong L, Guo Z. Chemical Engineering Journal, 2020, 388, 124283.
75 Fan H, Guo Z. Journal of Colloid and Interface Science, 2021, 591, 418.
76 Sun Y, Guo Z. Chemical Engineering Journal, 2020, 381, 122629.
77 Liu M, Li J, Hou Y, et al. ACS Nano, 2017, 11, 1113.
78 Li D, Lin Z, Zhu J, et al. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 621, 126590.
79 Su C, Chang J, Tang K, et al. Separation and Purification Technology, 2017, 178, 279.
80 Wu J, Zhang B, Wang B, et al. ChemNanoMat, 2017, 3, 869.
81 Lenhart J L, Cole P J. The Journal of Adhesion, 2006, 82, 945.
82 Yao X, Wu S, Chen L, et al. Angewandate Chemie-International Edition, 2015, 127, 9103.
83 Sotiri I, Tajik A, Lai Y, et al. Biointerphases, 2018, 13, 06D401.
84 Urata C, Dunderdale G J, England M W, et al. Journal of Materials Chemistry A, 2015, 3, 12626.
85 Zhang H, Liang Y, Wang P, et al. Progress in Organic Coatings, 2019, 132, 132.
86 Urata C, Nagashima H, Hatton B D, et al. ACS Applied Materials & Interfaces, 2021, 13, 28925.
87 Liu H, Zhang P, Liu M, et al. Advanced Materials, 2013, 25, 4477.
88 Yao X, Dunn S S, Kim P, et al. Angewandate Chemie-International Edition, 2014, 53, 4418.
89 Kommeren S, Guerin A J, Dale M L, et al. Journal Marine Science and Engineering, 2019, 7, 419.
90 Zhang H, Wang P, Zhang D. Colloids and Surfaces A, 2018,538, 140.
91 Wu L, Dong Z, Du H, et al. Research, 2018, DOI: 10.1155/2018/4795604.
92 Basu S, Hanh B M, Chua J Q I, et al. Journal of Colloid and Interface Science, 2020, 568, 185.
93 Zhang H, Yan H, Hu Z, et al. Journal of Magnetism and Magnetic Materials, 2018, 451, 102.
94 Cui W, Pakkanen T A. Journal of Colloid and Interface Science, 2020, 558, 251.
95 Ye L, Chen F, Liu J, et al. Macromolecular Rapid Communications, 2019, 40, 1900395.
96 Mukherjee R, Habibi M, Rashed Z T, et al. Scientific Reports, 2018, 8, 11698.
97 Kida T, Teragaki A, Kalaw J M, et al. Chemical Communications, 2020, 56, 7581.
98 Wang Z, Yi B, Wu M, et al. Advanced Functional Materials, 2021, 31, 2102888.
99 Fu X J. Preparation and properties of supramolecular organogels and hydrogels. Ph.D. Thesis, Huazhong University of Science and Technology, China, 2007(in Chinese).
付新建. 超分子有机凝胶和水凝胶的制备及其性能研究. 博士学位论文,华中科技大学,2007.
100 Salbaum T, Galvan Y, Haumann M, et al. Journal of Materials Chemistry A, 2021, 9, 2357.
101 Yan M, Chen R, Zhang C, et al. ACS Applied Materials & Interfaces, 2020, 12, 39807.
102 Gao Z, Xu T, Miao X, et al. Surfaces and Interfaces, 2021, 24, 101022.
103 Das A, Theato P. Chemical Reviews, 2016, 116, 1434.
104 Lin S, Shang J, Theato P. ACS Macro Letters, 2018, 7, 431.
105 Guo P, Wang Z, Heng L, et al. Advanced Functional Materials, 2019, 29, 1808717.
106 Liang Y, Wang P, Zhang D. ACS Applied Bio Materials, 2021, 4, 6056.
107 Vogel N, Belisle R A, Hatton B, et al. Nature Communications, 2013, 4, 2176.
108 Pant R, Ujjain S K, Nagarajan A K, et al. The European Physical Journal Applied Physics, 2016, 75, 11301.
109 Yu M, Liu M, Hou Y, et al,Journal of Materials Science, 2020, 55, 4225.
110 Huang W, Chen X, Hu M, et al. Chemistry of Materials,2019,31,834.
111 Hajeesaeh S, Muensit N, Van Dommelen P, et al. Materials Research Express, 2020, 7, 106409.
112 Kim P, Kreder M J, Alvarenga J, et al. Nano Letters, 2013, 13, 1793.
113 Howell C, Vu T L, Johnson C P, et al. Chemistry of Materials, 2015, 27(5), 1792.
114 Chen X, Wen G, Guo Z. Materials Horizons, 2020, 7, 1697.
115 Zhang J, Yao Z. Journal of Bionic Engineering, 2019, 16, 291.
116 Smith N M, Ebrahimi H, Ghosh R, et al. PNAS, 2018, 115(26), E5887.
117 Han X, Tang X, Chen R, et al. Chemical Engineering Journal, 2021, 420, 129599.
118 Gao X, Wen G, Guo Z. Colloids and Surfaces A, 2018, 559, 115.
119 Bandyopadhyay S, Khare S, Bhandaru N, et al. Langmuir, 2020, 36, 4135.
120 Zhang J, Zhu L, Zhao S, et al. Separation and Purification Technology, 2021, 256, 117751.
121 Han K, Wang Z, Heng L, et al. Journal of Materials Chemistry A, 2021, 9, 16974.
122 O'’Hagan D. Chemical Society Reviews, 2008, 37, 308.
123 Fan H, Guo Z. New Journal of Chemistry, 2020, 44, 15438.
124 Jing X, Guo Z. Nanoscale, 2019, 11, 8870.
125 Gou X, Guo Z. Langmuir, 2020, 36, 64.
126 Femg Y, Chen S, Cheng Y F. Surface & Coatings Technology, 2018, 340, 55.
127 Li H, Wei H, Zou X. Materials Chemistry and Physics, 2020, 246, 122839.
128 Wang M, Zhang D, Yang Z, et al. Langmuir, 2020, 36, 10279.
129 Li J, Shi L, Chen Y, et al. Journal of Materials Chemistry, 2012, 22, 9774.
130 Doll K, Yang I, Fadeeva E, et al. ACS Applied Materials & Interfaces, 2019, 11, 23026.
131 Cao J, An Q, Liu Z, et al. Sensors & Actuators B: Chemical, 2019, 291, 470.
132 Rao Q, Li A, Zhang J, et al. Journal of Materials Chemistry A, 2019, 7, 2172.
133 Chen Y, Guo Z. Journal of Materials Chemistry A, 2020, 8, 24075.
134 Awad T S, Asker D, Hatton B D. ACS Applied Materials & Interfaces, 2018, 10, 22902.
135 Weisensee P B, Wang Y, Qian H, et al. International Journal of Heat and Mass Transfer, 2017, 109, 187.
136 Peppou-Chapman S, Hong J K, Waterhouse A, et al. Chemical Society Reviews, 2020, 49, 3688.
137 Anand S, Paxson A T, Dhiman R, et al. ACS Nano, 2012, 6, 10122.
138 Miranda D F, Urata C, Masheder B, et al. APL Materials, 2014, 2, 056108.
139 Wang X Q, Gu C D, Wang L Y, et al. Chemical Engineering Journal, 2018, 343, 561.
140 Tonelli M, Peppou-Chapman S, Ridi F, et al. The Journal of Physical Chemistry C, 2019, 123, 2987.
141 Zhao L, Li R, Xu R, et al. Journal of Membrane Science, 2020, 611, 118289.
142 Zhang J, Wu L, Li B, et al. Langmuir, 2014, 30, 14292.
143 Daniel D, Mankin M N, Belisle R A, et al. Applied Physical Letters, 2013, 102, 231603.
144 Xing K, Li Z, Wang Z, et al. Chemical Engineering Journal, 2021, 418, 129079.
145 Pham Q N, Zhang S, Montazeri K, et al. Langmuir,2018,34,14439.
146 Wang N, Xiong D, Pan S, et al. Applied Surface Science, 2016, 387, 1219.
147 Baek S, Yong K. Applied Surface Science, 2020, 506, 144689.
148 Owen M J, Dvornic P R. Silicone Surface Science, Springer, German, 2012, pp. 1.
149 Yang Z, Liu X, Tian Y. Progress in Organic Coatings, 2020, 138, 105313.
150 Yang Z, He X, Chang J, et al. Surface & Coatings Technology, 2021, 415, 127136.
151 Maszewska M, Florowska A, Dłuzewska E, et al. Molecules, 2018, 23, 1746.
152 Ma W, Higaki Y, Otsuka H, et al. Chemical Communications, 2013, 49, 597.
153 Gurav A B, Shi H, Duan M, et al. Chemical Engineering Journal, 2021, 416, 127809.
154 Deng R, Shen T, Chen H, et al. Journal of Materials Chemistry A, 2020,8, 7536.
155 Kreder M J, Daniel D, Tetreault A, et al. Physical Review, 2018, 8, 031053.
156 Sadullah M S, Semprebon C, Kusumaatmaja H. Langmuir, 2018, 34(27), 8112.
157 Yu C, Zhu X, Li K, et al. Advanced Functional Materials, 2017, 27, 1701605.
158 Wang X, Wang Z, Heng L, et al. Advanced Functional Materials, 2020, 30, 1902686.
159 Liu P, Zhang H, He W, et al. ACS Nano, 2017, 11, 2248.
160 Singh N, Kakiuchida H, Sato T, et al. Langmuir, 2018, 34, 11405.
161 Wang L, McCarthy T J. Angewandate Chemie-International Edition, 2016, 128, 252.
162 Zhao X, Khandoker M A R, Golovin K. ACS Applied Materials & Interfaces, 2020, 12, 15748.
163 Mao X, Tan J, Xie L, et al. Chemical Engineering Journal, 2021, 404, 127064.
164 Xie L, Cui X, Liu J, et al. ACS Applied Materials & Interfaces, 2021, 13, 6941.
165 Yeon H, Wang C, Lehn R C V, et al. Langmuir, 2017, 33, 4628.
166 Chen J, Wang Z, Oyola-Reynoso S, et al. Langmuir, 2017, 33, 13451.
167 Siriviriyanun A, Imae T. Chemical Engineering Journal,2014,246,254.
168 Barrena E, Kopta S, Ogletree D F, et al. Physical Review Letters, 1999, 82, 14.
169 Koch K, Ensikat H J. Micron, 2008, 39, 759.
170 Neinhuis C, Koch K, Barthlott W. Planta, 2001, 213, 427.
171 Manabe K, Matsubayashi T, Tenjimbayashi M, et al. ACS Nano, 2016, 10, 9387.
172 Meng X, Wang Z, Wang L, et al. Journal of Materials Chemistry A, 2018, 6, 16355.
173 Guo P, Sun Y, Zhang Y, et al. ChemPhysChem, 2019, 20, 946.
174 Xiang T, Liu J, Liu Q, et al. Chemical Engineering Journal, 2021, 417, 128083.
175 Han G, Nguyen T B, Park S, et al. ACS Nano, 2020, 14, 10198. |
|
|
|