INORGANIC MATERIALS AND CERAMIC MATRIX COMPOSITES |
|
|
|
|
|
Research Status of Improving Cementitious Activity and Volume Stability of Steel Slag |
WANG Jianfeng, CHANG Lei, WANG Yan, LIU Hui, YUE Deyu, CUI Suping, LAN Mingzhang
|
Key Laboratory of Advanced Functional Materials, Ministry of Education,Facaulty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China |
|
|
Abstract With the yearly increase of crude steel production, the accumulated storage volume of steel slag in China is also rising, and the use of steel slag as supplementary cementitious material is an effective measure to improve the comprehensive utilization rate of steel slag and reduce the carbon emission of cement and concrete industry. However, steel slag has problems such as low content and low activity of the cementitious component and high content of swelling components, which limit its application in cement and concrete. At present,many methods are used to improve the cementitious activity and volume stability of steel slag, including mechanical grinding activation, high temperature activation, acid activation, alkali activation, organic activation and carbonization activation. Mechanical grinding activation mainly through the physical way to break the steel slag crystal structure and reduce the particle size, but it has high energy consumption and only for the early strength benefit. High temperature activation mainly includes high temperature curing and high temperature reconstruction. High temperature curing promotes hydration by changing the external environment in which the steel slag is hydrated, but the higher temperature will cause the decomposition of ettringite and introduce pores. High temperature reconstruction process directly changes the mineral composition of the steel slag, but there are problems such as high energy consumption and poor homogeneity. Alkali activation can promote ion dissolution and consume calcium hydroxide, but there are problems such as alkali aggregate reaction and efforescence. Acid activation can promote ion dissolution and increase the specific surface area of steel slag, but it will react with the active components in steel slag. In organic activation, alkanolamines can promote ion dissolution through complexation, but the mechanism of action of alkanolamines with different molecular structures is still unclear. Carbonation fills the pores through the reaction of calcium and magnesium minerals with CO2 to form carbonates as microaggregates, but the presence of CO2 diffusion resistance to the interior of the specimen will make the carbonation degree uneven inside and outside. This paper analyzes the reasons of low activity and poor volume stability of steel slag from the source and composition of steel slag, summarizes the common methods for improving the cementitious activity and volume stability of steel slag, points out the current dilemmas faced by various methods and makes certain outlooks, in order to provide references for further optimization of steel slag properties and promote the further application of steel slag in the cement and concrete industry.
|
Published: 10 June 2023
Online: 2023-06-19
|
|
Fund:Beijing Natural Science Foundation-Education Commission Joint Program (KZ202010005013), the National Natural Science Foundation of China (51504013). |
|
|
1 The National People's Congress of the People's Republic of China. The 14th five year plan for national economic and social development of the People's Republic of China and the outline of long-term objectives for 2035, People’s Publishing House, China, 2021(in Chinese). 中华人民共和国全国人民代表大会. 中华人民共和国国民经济和社会发展第十四个五年规划和2035年远景目标纲要, 人民出版社, 2021. 2 Huang X H, Wu H, Lu D Y. Journal of Hazardous Materials, 2020, 403, 124042. 3 Long W Q, Wang S S, Lu C Y, et al. Journal of Cleaner Production, 2020, 273, 123163. 4 Jing W, Jiang J P, Ding S, et al. Molecules, 2020, 25(19), 4456. 5 Feng J J, Sun J W. Construction and Building Materials, 2020, 234, 116948. 6 Zhuang S Y, Wang Q. Cement and Concrete Research, 2021, 140, 106283. 7 Jia R Q, Liu J X. Cement and Concrete Research, 2017, 91, 123. 8 Wang Y, Suraneni P. Construction and Building Materials, 2019, 204(20), 458. 9 Yildirim I Z, Prezzi M, et al. Advances in Civil Engineering, 2011, 2011, 463638. 10 Liao Y S, Jiang G X, Wang K J, et al. Construction and Building Mate-rials, 2020, 265, 120301. 11 Piemonti A, Conforti A, Cominoli L, et al. Sustainability, 2021, 13, 556. 12 Guo J L, Bao Y P, Wang M. Waste Management, 2018, 78, 318. 13 Han F, Zhang Z, Wang D, et al. Thermochimica Acta, 2015, 605, 43. 14 Saly F, Guo L P, Ma R, et al. Journal of Wuhan University of Technology, 2018, 33(6), 1444. 15 Zang J, Li W F, Shen X D. Ceramics Silikáty, 2019, 63(1), 67. 16 Gao T M, Dai T, Shen L, et al. Journal of Cleaner Production, 2020, 282, 124538. 17 Zhang N, Wu L, Liu X, et al. Construction and Building Materials, 2019, 219, 11. 18 Rooholamini H, Sedghi R, Ghobadipour B, et al. Construction and Buil-ding Materials, 2019, 211, 88. 19 Lu X, Dai W, Liu X, et al. Metallurgical Research and Technology, 2019, 116, 2. 20 Cˇenovar M, Traven K, Horvat B, et al. Materials, 2019, 12(7), 1173. 21 Tsakiridis P E, Papadimitriou G D, Tsivilis S, et al. Journal of Hazar-dous Materials, 2008, 152(2), 805. 22 Singh S K, Jyoti, Vashistha P. Construction and Building Materials, 2021, 268, 121147. 23 Montenegro-Cooper J M, Celemin-Matachana M, Canizal J, et al. Construction and Building Materials, 2019, 203, 201. 24 Xu B, Yi Y L. Science of The Total Environment, 2019, 705, 135854. 25 Gollapalli V, Tadivaka S R, Borra C R, et al. Journal of Sustainable Metallurgy, 2020, 6(1), 121. 26 Aponte D, Martín O S, Barrio S V, et al. Minerals, 2020, 10(8), 687. 27 Tang M S, Yuan M X, Han S F, et al. Journal of Thermal Analysis and Calorimetry, 1979(1), 35(in Chinese). 唐明述, 袁美栖, 韩苏芬, 等. 硅酸盐学报, 1979, 1, 35. 28 Xiang X D, Xi J C, Li C H, et al. Construction and Building Materials, 2016 , 114, 874. 29 Wang Q, Yan P Y, Feng J W. Journal of Hazardous Materials, 2011, 186, 1070. 30 BrandA S, Roesler J R. Cement and Concrete Composites, 2018, 86, 117. 31 Mehta P K, Monteiro P J M. Concrete microstructure, properties and materials, McGraw-Hill Company, America, 2006. 32 Ye G X. Divalent Oxide in steel slag and its relationship with volume stabi-lity of steel slag cement, China Architecture and Building Press, China, 1980(in Chinese). 叶贡欣. 钢渣中二价氧化物相及其与钢渣水泥体积安定性的关系, 中国建筑工业出版社, 1980. 33 Chen Z M, Li R, Zheng X M, et al. Cement and Concrete Research, 2021, 139, 106271. 34 Jiang Y, Ling T C, Shi A C, et al. Resources, Conservation and Recycling, 2018, 136, 187. 35 Kriskova L, Pontikes Y, Cizer ?, et al. Cement and Concrete Research, 2012, 42(6), 778. 36 Liu S H, Li L H, et al. Journal of Thermal Analysis and Calorimetry, 2014, 117(2), 629. 37 Duan S Y, Liao H Q, Song H P, et al. Construction and Building Materials, 2019, 212, 140. 38 Wang Q, Shi M X, Yang J, et al. Construction and Building Materials, 2016, 123, 601. 39 Zhu X, Hou H B, Huang X Q, et al. Construction and Building Mate-rials, 2012, 29, 476. 40 Zhou S X, Zhang M L. Introduction to powder engineering, Science Press, China, 2010. 周仕学, 张鸣林. 粉体工程导论, 科学出版社, 2010. 41 Ludwig H M, Zhang W S. Cement and Concrete Research, 2015, 78, 24. 42 Mishra R K, Flatt R J, Heinz H. Journal of Physical Chemistry C, 2013, 117(20), 10417. 43 Cui X W, Leng X Y, Nan N, et al. Bulletin of the Chinese Ceramic Society, 2018, 37(12), 3821(in Chinese). 崔孝炜, 冷欣燕, 南宁, 等. 硅酸盐通报, 2018, 37(12), 3821. 44 Li L L, Zhao F Q, Liu S J. Advanced Materials Research, 2014, 884-885, 702. 45 Liu Q, Liu J X, Qi L Q. Construction and Building Materials, 2016, 124, 999. 46 Song X F, Cui H L, Yang E K, et al. Transactions of Materials and Heat Treatment, 2020, 41(5), 140(in Chinese). 宋学锋, 崔贺龙, 杨尔康, 等. 材料热处理学报, 2020, 41(5), 140. 47 Zheng C H, Ma Y W, Liu G Z, et al. Bulletin of the Chinese Ceramic Society, 2020,39(11),3557. 郑翠红, 马彦伟, 刘国忠, 等. 硅酸盐通报, 2020, 39(11), 3557. 21100032-848 Zhao Q L, Stark J, Freyburg E, et al. Advanced Materials Research, 2012, 356-360, 1919. 49 Gong C C, Yu Q J, Wei J X. Journal of Thermal Analysis and Calorimetry, 2010, 38(11), 2193(in Chinese). 宫晨琛, 余其俊, 韦江雄. 硅酸盐学报, 2010, 38(11), 2193. 50 Rao L, Wu L S, Zhou Y, et al. Steelmaking, 2017, 33(6), 73(in Chinese). 饶磊, 吴六顺, 周云, 等. 炼钢, 2017, 33(6), 73. 51 Liu S Y, Wang Z J, Peng B, et al. Chinese Journal of Engineering, 2018, 40(5), 557(in Chinese). 刘仕业, 王占军, 彭犇, 等. 工程科学学报, 2018, 40(5), 557. 52 Zhang Z S, Lian F, Ma L J, et al. Journal of Iron and Steel Research(International), 2015, 22(1), 15. 53 Sun J, Chen Z. Journal of Thermal Analysis and Calorimetry, 2019, 138(1), 47. 54 Kriskova L, Pontikes Y, Zhang F, et al. Cement and Concrete Research, 2014, 55, 59. 55 Liu Z, Zhang D W, Li L, et al. Construction and Building Materials, 2019, 204, 158. 56 Zhang L, Chen B. Journal of Materials in Civil Engineering, 2017, 29(9), 04017091. 57 Wang Z, Sun Y, Zhang S, et al. RSC Advances, 2019, 9(18), 9993. 58 Salman M, Cizer ?, Pontikes Y, et al. Journal of Hazardous Materials, 2015, 286, 211. 59 Nikolic I, Drincic A, Djurovic D, et al. Construction and Building Materials, 2016, 108, 1. 60 Dang Y F, Li X G. China Powder Science and Technology, 2006(5), 16(in Chinese). 党永发, 李晓光.中国粉体技术, 2006(5), 16. 61 Zhang H, Long H M, Yang G, et al. The Chinese Journal of Process Engineering, 2017, 17(4), 810(in Chinese). 张浩, 龙红明, 杨刚, 等. 过程工程学报, 2017, 17(4), 810. 62 Zhu B R, Yang Q B, Yao D W, et al. Journal of Tongji University(Natural Science), 2009, 37(10), 1375(in Chinese). 朱蓓蓉, 杨全兵, 姚冬晚, 等. 同济大学学报(自然科学版), 2009, 37(10), 1375. 63 Chen L, Liu B G, Zhang L B, et al. Iron Steel Vanadium Titanium, 2017, 38(6), 74(in Chinese). 陈林, 刘秉国, 张利波, 等. 钢铁钒钛, 2017, 38(6), 74. 64 Zhang H, Zhang X Y, Long H M. Spectroscopy and Spectral Analysis, 2018, 38(11), 3502(in Chinese). 张浩, 张欣雨, 龙红明. 光谱学与光谱分析, 2018, 38(11), 3502. 65 Huo B B, Li B L, Huang S, et al. Construction and Building Materials, 2020, 254, 119319. 66 Huo B B, Li B L, Luo Y L, et al. Journal of Building Materials, 2022, 25(6), 591 (in Chinese). 霍彬彬, 李保亮, 罗阳林, 等. 建筑材料学报, 2022, 25(6), 591. 67 Huo B B, Li BL, Chen C, et al. Construction and Building Materials, 2021, 280, 122500. 68 Huo B B, Li B L, Chen C, et al. Journal of Thermal Analysis and Calorimetry, 2021, 49(5), 948(in Chinese). 霍彬彬, 李保亮, 陈春, 等. 硅酸盐学报, 2021, 49(5), 948. 69 Pan Z Y, Wang S, Liu Y C, et al. Journal of Cleaner Production, 2019, 235 (20), 866. 70 Wang X L, Wang J F, Yang S G, et al. Journal of Thermal Analysis and Calorimetry, 2017, 45(2), 206(in Chinese). 王雪莉, 王剑锋, 杨松格, 等. 硅酸盐学报, 2017, 45(2), 206. 71 Yang S G, Wang J F, Cui S P, et al. Construction and Building Mate-rials, 2017, 131(30), 655. 72 Xu Z Q, Li W F, Sun J F, et al. Construction and Building Materials, 2017, 141, 296. 73 Xu Z Q, Li W F, Sun J F, et al. Journal of Thermal Analysis and Calorimetry, 2018, 131, 37. 74 Cui S P, Yang S G, Wang J F, et al. Journal of Beijing University of Technology, 2016, 42(7), 1108(in Chinese). 崔素萍, 杨松格, 王剑锋, 等. 北京工业大学学报, 2016, 42(7), 1108. 75 Gartner E, David M. Journal of the American Ceramic Society, 1993, 76(6), 1521. 76 Lu Z C, Kong X M, Jansen D, et al. Cement and Concrete Research, 2020, 132, 106041. 77 Ramachandran V S. Cement and Concrete Research, 1973, 3(1), 41. 78 Ramachandran V S. Cement and Concrete Research, 1976, 6, 623. 79 Yaphary Y L, Yu Z C, Lam R H W. Construction and Building Mate-rials, 2017, 141, 94. 80 Ma S H, Li W F, Zhang S B, et al. Cement and Concrete Research, 2015, 67, 122. 81 Lu X L, Ye Z M, Zhang L, et al. Construction and Building Materials, 2017, 135, 484. 82 Ramachandran V S. Journal of Applied Chemistry and Biotechnology, 1972, 22, 1125. 83 Zhang Y R, Kong X M, Lu Z C, et al. Cement and Concrete Research, 2016, 87, 64. 84 Wang J, Kong X M, Yin J H, et al. Cement and Concrete Research, 2020, 138, 10625. 85 Zhang Y R,Gao L, Cai X P, et al. Construction and Building Materials, 2020, 238, 117670. 86 Ma B G, Xu Y H, Dong R Z. Journal of Building Materials, 2006, 9(1), 6(in Chinese). 马保国, 许永和, 董荣珍. 建筑材料学报, 2006, 9(1), 6. 87 Zhang T, Ma B G, Tan H B, et al. Journal of Environmental Management, 2020, 276, 111274. 88 Wang J, Ma B G, Ti H B, et al. Construction and Building Materials, 2021, 266, 121068. 89 Liu H, Wang J F, Wang J C,et al. Advances in Cement Research, 2018, 32(5), 234. 90 Ma S H, Li W F, Shen X D. Construction and Building Materials, 2019, 213, 617. 91 Chang J, Wu H Z. Journal of the Chinese Ceramic Society, 2010, 38(7), 1185(in Chinese). 常钧, 吴昊泽. 硅酸盐学报, 2010, 38(7), 1185. 92 Liu G, Schollbach K, Li P, et al. Construction and Building Materials, 2021, 280, 122580. 93 Hou G, Yan Z, Sun J, et al. Construction and Building Materials, 2020, 271(9), 121581. 94 Mahoutian M, Ghouleh Z, Shao Y X. Construction and Building Mate-rials, 2014, (66),214. 95 Hu Z, Guan Y, Chang J, et al. Materials, 2020, 13(21), 5006. 96 Morandeau A, Thiéry M, Dangla P. Cement and Concrete Research, 2014, 56(10), 153. 97 Wang D, Chang J, Ansari W S. Journal of CO2 Utilization, 2019, 34, 87. 98 Zeng H M, Liu Z C, Wang F Z. Journal of the Chinese Ceramic Society, 2020, 48(11), 1801 (in Chinese). 曾海马, 刘志超, 王发洲. 硅酸盐学报, 2020, 48(11), 1801. 99 Ye J Y, Zhang W S, Shi D, et al. Journal of the Chinese Ceramic Society, 2019, 47(11), 1582 (in Chinese). 叶家元, 张文生, 史迪, 等. 硅酸盐学报, 2019, 47(11), 1582. 100 Yang S, Mo L W, Deng M. Cement and Concrete Composites, 2021, 118, 102948. |
|
|
|