INORGANIC MATERIALS AND CERAMIC MATRIX COMPOSITES |
|
|
|
|
|
Magnetic Chitosan Modified by Quaternary Ammonium Salt and Its Phosphorus Adsorption |
PENG Xujie1, LI Jianjun1,2,*, CAO Ruichang1, RONG Xin1, LI Meng1, LIU Yin2
|
1 School of Materials Science and Engineering, Anhui University of Science and Technology, Huainan 232001, Anhui, China 2 Anhui International Joint Research Center for Nano Carbon-based Materials and Environmental Health, Anhui University of Science and Technology, Huainan 232001, Anhui, China |
|
|
Abstract To improve the solid-liquid separation efficiency and selective adsorption of phosphorus sorbent, magnetic CMS/CS/MAPTAC composites were prepared, using coal-fly-ash magnetic spheres (CMS) and chitosan (CS) modified by methacrylamido propyl trimethyl ammonium chloride (MAPTAC) as magnetic core and shell, respectively. Thermogravimetry analysis, X-ray diffraction, vibration sample magnetometer, scanning electron microscopy, infrared spectroscopy and X-ray photoelectron spectroscopy were employed to characterize the obtained CMS/CS/MAPTAC. It is shown that CMS is uniformly distributed in the CS matrix. MAPTAC is modified onto the surface of CS by chemical bonds. The CMS/CS/MAPTAC sample has strong magnetism up to 16.8 emu/g, which enables an efficient solid-liquid separation under an applied magnetic field. Phosphorus adsorption experiments indicate that the loading of MAPTAC on the surface of CMS/CS improves the phosphorus adsorption performance. The maximum phosphorus adsorption capacity of 50.7 mg/g was obtained under the conditions of pH=4.0 and 25 ℃. The reaction time, pH, phosphate concentration, temperature and coexisting anions have significant effects on the phosphorus adsorption. The adsorption kinetics and adsorption thermodynamics simulation suggests that the phosphorus adsorption of CMS/CS/MAPTAC conforms to the pseudo-second-order model and Langmui-iso-absorbing model. Thus, the adsorption should mainly belong to monolayer chemisorption. The CMS/CS/MAPTAC adsorbent can be recycled and reused multiple times. After 5 recycling, the phosphorus adsorption was still more than 60% of that initial sample.
|
Published: 10 November 2022
Online: 2022-11-03
|
|
Fund:Natural Science Foundation of Anhui Province (1908085ME127), Research Foundation of the Institute of Environment-friendly Materials and Occupational Health (Wuhu), the Anhui University of Science and Technology (ALW2021YF11) and 2021 Anhui Province College Quality Engineering Project (2021cyxy031). |
|
|
1 Wu Y, Luo J, Zhang Q, et al. Chemosphere, 2019, 226, 246. 2 Paul B, Bhattacharya S S, Gogoi N. Science of the Total Environment, 2021, 762, 143171. 3 Vinçon-Leite B, Casenave C. Science of the Total Environment, 2019, 651, 2985. 4 Jastrzab R, Nowak M, Zabiszak M, et al. Coordination Chemistry Reviews, 2021, 435, 213810. 5 Bi W, Li Y, Hu Y. Bioresource Technology, 2014, 166, 1. 6 Donatello S, Cheeseman C R. Waste Management, 2013, 33(11), 2328. 7 Adam C, Peplinski B, Michaelis M, et al. Waste Management, 2009, 29(3), 1122. 8 Zhao S, Xu W, Zhang W, et al. Bioresource Technology, 2021, 323, 124641. 9 Chen Z, Luo H, Rong H. International Journal of Biological Macromolecules, 2020, 164, 1183. 10 Jiang H, Chen P, Luo S, et al. Applied Surface Science, 2013, 284, 942. 11 Anirudhan T S, Rauf T A, Rejeena S R. Desalination, 2012, 285, 277. 12 Chen A Y, Cheng X, Huang R X, et al. Journal of Chemical Enginee-ring, 2008, 59(9), 2270(in Chinese). 陈爱燕, 程翔, 黄新瑞,等. 化工学报, 2008, 59(9), 2270. 13 Wang L, Wang J, He C, et al. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 561, 236. 14 Vu M T, Chao H P, Van Trinh T, et al. Journal of Cleaner Production, 2018, 180, 560. 15 Józ'wiak T, Filipkowska U, Szymczyk P, et al. International Journal of Biological Macromolecules, 2017, 104, 1280. 16 Zhang Y, Zhao M, Cheng Q, et al. Chemosphere, 2021, 279, 130927. 17 Song J M, Zhang X, Gao Y R,et al. Journal of Chongqing Technology and Business University(Natural Science Edition), 2020,37(3),17(in Chinese). 宋俊梅,张昕,高玉荣. 重庆工商大学学报(自然科学版), 2020,37(3),17. 18 Liu J, Wan L, Zhang L, et al. Journal of Colloid and Interface Science, 2011, 364(2), 490. 19 Luo Y, Wu Y, Ma S, et al. Environmental Science and Pollution Research,2020, 28(15), 18727. 20 Blaha U, Sapkota B, Appel E, et al. Atmospheric Environment, 2008, 42(36), 8359. 21 Li J J, Dan H B, Xie W, et al. Chinese Journal of Inorganic Chemistry, 2018, 34(8), 1455 (in Chinese). 李建军, 但宏兵, 谢蔚, 等. 无机化学学报, 2018, 34(8), 1455. 22 Wu X F, Li J J, Zhu J B, et al. Materials Reports A:Review Papers, 2015, 29(12), 103 (in Chinese). 吴先锋, 李建军, 朱金波, 等. 材料导报:综述篇, 2015, 29(12), 103. 23 Tran H N, You S J, Hosseini Bandegharaei A, et al. Water Research, 2017, 120, 88. 24 Banu H T, Karthikeyan P, Meenakshi S. International Journal of Biological Macromolecules, 2019, 130, 573. 25 Banu H a T, Karthikeyan P, Vigneshwaran S, et al. International Journal of Biological Macromolecules, 2020, 154, 188. 26 Gamal A, Ibrahim A G, Eliwa E M, et al. International Journal of Biological Macromolecules, 2021, 183, 1283. 27 Hua C, Zhang R, Bai F, et al. Chinese Journal of Chemical Engineering, 2017, 25(2), 153. 28 Tsiourvas D, Tsetsekou A, Arkas M, et al. Journal of Materials Science: Materials in Medicine, 2011, 22(1), 85. 29 Fu C C, Tran H N, Chen X H, et al. Journal of Industrial and Enginee-ring Chemistry, 2020, 83, 235. 30 Li K, Li P, Cai J, et al. Chemosphere, 2016, 154, 310. 31 Wu Y, Zhang T, Zheng Z, et al. Materials Research Bulletin, 2010, 45(4), 513. 32 Xu J, Cao Z, Liu X, et al. Journal of Hazardous Materials, 2016, 317, 656. 33 Andreica B I, Cheng X, Marin L. European Polymer Journal, 2020, 139, 110016. 34 Sarkar A, Biswas S K, Pramanik P. Journal of Materials Chemistry, 2010, 20(21), 4417. 35 Blaney L M, Cinar S, Sengupta A K. Water Research, 2007, 41(7), 1603. 36 Lai L, Xie Q, Chi L, et al. Journal of Colloid and Interface Science, 2016, 465, 76. 37 Li D, Min H, Jiang X, et al. Journal of Colloid and Interface Science, 2013, 404, 42. 38 Cao D, Jin X, Gan L, et al. Chemosphere, 2016, 159, 23. 39 Chen C, Wang X. Industrial & Engineering Chemistry Research, 2006, 45(26), 9144. 40 Özacar M. Cement and Concrete Research, 2003, 33(10), 1583. 41 Ho Y S. Adsorption, 2004, 10(2), 151. 42 Anoop Krishnan K, Anirudhan T S. Journal of Hazardous Materials, 2002, 92(2), 161. 43 Webster A, Halling M D, Grant D M. Carbohydrate Research, 2007, 342(9), 1189. 44 Monteiro Jr O A C, Airoldi C. International Journal of Biological Macromolecules, 1999, 26(2), 119. 45 Bui T H, Lee W, Jeon S B, et al. Separation and Purification Technology, 2020, 248, 116989. 46 Aswin Kumar I, Viswanathan N. Journal of Chemical & Engineering Data, 2018, 63(1), 147. |
|
|
|