METALS AND METAL MATRIX COMPOSITES |
|
|
|
|
|
Progress of Metal Nano-catalysts in Microfluidic Systems |
SUN Mojie, WANG Yang, LIU Jianjun, ZHANG Shiyuan, ZHOU Jing, ZHANG Ting*
|
School of Chemical Engineering, Northeast Electric Power University, Jilin 132012, Jilin, China |
|
|
Abstract Metal catalysts are generally categorized as mono- and multimetallic catalysts, depending on the number of active components.Metal materials exhibit superior catalytic activity and stability owing to their large specific surface area and high stability when reduced to the nanometer level.Therefore, metal nanomaterials have attracted significant research attention in the field of catalysis.They possess high mass and heat transfer efficiency and high mixing rate, which can significantly improve the reaction rate, owing to their large surface area to volume ratio and size effect of the microfluidic reactor.However, controlling the reaction process during the synthesis of metal nanomaterials by conventional methods is difficult.The precise manipulability characteristics of microfluidic methods for tiny volumes of fluids can be used to obtain materials with controllable structure function and uniform size distribution. Combined with the characteristics of microfluidic systems and the high catalytic performance of metal nanomaterials, this review summarizes the research progress in the preparation of mono- and multimetallic nanomaterials through microfluidic systems, as well as explores their applications as catalysts in the fields of fuel cells and organic synthesis.By modulating the microstructure of metal nanomaterials with microfluidic systems, the effects of microreactor channel structure and reaction conditions on the microstructure of the materials are discussed.This review provides an outlook on the integration and industrialization of metal nanocatalysts prepared through microfluidic technology.
|
Published: 10 April 2023
Online: 2023-04-07
|
|
Fund:National Natural Science Foundation of China(51772049). |
|
|
1 Samanta A, Das S, Jana S. Nanoscale Advances, 2020, 2, 417. 2 Guo K, Ding Y, Luo J, et al. ACS Applied Energy Materials, 2019, 2(8), 5851. 3 Dong N, Chen Z, Wang C. Nonferrous Metals (Extractive Metallurgy), 2020(5), 71 (in Chinese). 董娜, 陈哲, 王辰. 有色金属(冶炼部分), 2020(5), 71. 4 Gao R. Guangzhou Chemical Industry, 2020, 48(17), 24 (in Chinese). 高瑞. 广州化工, 2020, 48(17), 24. 5 Zhao X, Wei C, Gai Z, et al. Chemical Papers, 2020, 74(3), 767. 6 Seki Y, Sawada Y, Funakubo H, et al. MRS Advances, 2020, 5(31-32), 1. 7 Musza K, Szabados M, Dám A A, et al. Journal of Solid State Chemi-stry, 2021, 293, 121756. 8 Guo M Y, Li F H, Bao Y, et al. Chinese Journal of Applied Chemisity, 2016, 33(10), 1115 (in Chinese). 郭梦园, 李风华, 包宇, 等. 应用化学, 2016, 33(10), 1115. 9 Kung C T, Gao H, Lee C Y, et al. Chemical Engineering Journal, 2020, 399(1), 125748. 10 Solsona M, Vollenbroek J, Tregout C, et al. Lab on a Chip, 2019, 19(21), 3601. 11 Lu J M, Wang H F, Pan J Z, et al. Acta Chimica Sinica, 2021, 79(7), 809 (in Chinese). 卢佳敏, 王慧峰, 潘建章, 等. 化学学报, 2021, 79(7), 809. 12 Fang Z, Ding Y, Zhang Z, et al. Lab on a Chip, 2020, 20, 722. 13 Min Q, Li Z, Yang S, et al. Reaction Chemistry & Engineering, 2019, 4(2), 351. 14 Zhou Y, Wang D, Kang X, et al. Nanoscale, 2020, 12(23), 12647. 15 Lohse S, Eller J, Sivapalan S, et al. ACS Nano, 2013, 7, 4135. 16 SebastiánV, Jensen K F. Nanoscale, 2016, 8(33), 15288. 17 Xin S, Zhu C, Fu T, et al. Chemical Engineering Science, 2018, 188(12), 158. 18 Liu X Y, Fu T T, Zhu C Y, et al. Journal of Chemical Industry and Engineering(China), 2021, 72(2), 772 (in Chinese). 刘西洋, 付涛涛, 朱春英, 等. 化工学报, 2021, 72 (2), 772. 19 Kim Y H, Zhang L, Yu T, el al. Small, 2013, 9(20), 3462. 20 Zhang L, Niu G, Lu N, el al. Nano Letters, 2014, 14(11), 6626. 21 Lamer V, Dinegar R. Journal of the American Chemical Society, 1950, 72(11), 4847. 22 Wang J, Song Y. Small, 2017, 13(18), 1604084. 23 Shen X, Song Y, Li S, et al. RSC Advances, 2014, 4, 34179. 24 Yaqoob L, Noor T, Iqbal N. International Journal of Energy Research, 2020, 45(5), 6550. 25 Suryawanshi P L, Gumfekar S P, Kumar P R, et al. Colloid and Interface Science Communications, 2016, 13, 6. 26 Luty-Błocho M, Wojnicki M, Pacławski K, et al. Chemical Engineering Journal, 2013, 226, 46. 27 Ran G, Fu Q, Xu W. RSC Advances, 2015, 5(19), 14740. 28 Huang L. Atomic-scale regulation of nanomaterials for enhanced catalytic performance. Ph. D. Thesis, University of Science and Technology of China, China, 2019 (in Chinese). 黄亮. 纳米材料原子调控增强催化性能. 博士学位论文, 中国科学技术大学, 2019. 29 Huang L, Zhang X, Han Y, et al. Chemistry of Materials, 2017, 29(10), 4557. 30 Xiao C, Tian N, Zhou Z Y, et al. Journal of Electrochemistry, 2020, 26(1), 64 (in Chinese). 肖翅, 田娜, 周志有, 等. 电化学, 2020, 26(1), 64. 31 Huang R, Chen S P, Zhou Z Y, et al. In:China Symposium on Nanomaterials and Structures, Testing and Characterization, Fujian, China, 2010, pp, 28 (in Chinese). 黄蕊, 陈声培, 周志有, 等. 全国纳米材料与结构, 检测与表征研讨会, 福建, 2010, pp, 28. 32 Zhao X, Xi C, Zhang R, et al. ACS Catalysis, 2020, 10(18), 10637. 33 Sun M, Liu T, Xu W L. Chinese Journal of Applied Chemistry, 2018, 35(5), 564. 34 Wang Z, Fan H, Liang H, et al. Electrochimica Acta, 2017, 230, 245. 35 Alruqi S, Al-Thabaiti S, Malik M, et al. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2018, 540(5), 36. 36 Tang Y, Gao F, Yu S, et al. Journal of Power Sources Power Sources, 2013, 239(1), 374. 37 Wu F X, Zhang D T, Peng M H, et al. Angewandte Chemie International Edition, 2016, 55(16), 4952. 38 Cho S, Sa Y J, Hwang S, et al. Small, 2016, 12(38), 5347. 39 Hu Y, Lu Y, Zhao X, et al. Nano Research, 2020, 13, 2365. 40 Zhang D, Wu F, Peng M, et al. Journal of the American Chemical Society, 2015, 137(19), 6263. 41 Feng Y, Li Z, Huang C, et al. Ionics, 2011, 17(7), 617. 42 Sebastian V, Zaborenko N, Gu L, et al. Crystal Growth & Design, 2017, 17(5), 2700. 43 Knauer A, Thete A, Li S, et al. Chemical Engineering Journal, 2011, 166(3), 1164. 44 Laura U, Arruebo M, Sebastian V, et al. Dalton Transactions, 2018, 47(5), 1693. 45 Silva M, Ângelo A C. Electrocatalysis, 2010, 1(2-3), 95. 46 Zhang D, Wang Y, Deng J, et al. Nano Energy, 2020, 70, 104565. 47 Hyun M S, Kim S K, Lee B, et al. Catalysis Today, 2008, 132(1-4), 138. 48 Lee Y W, Kim M, Kim Y, et al. The Journal of Physical Chemistry C, 2010, 114(17), 7689. 49 Tofighi G, Lichtenberg H, Pesek J, et al. Reaction Chemistry & Engineering, 2017, 2, 876. 50 Bandulasena M V, Vladisavljevic G T, Odunmbaku O G, et al. Chemical Engineering Science, 2017, 171(2), 243. 51 Jamal F, Jean-Sébastien G, Penhoat M, et al. Microsystem Technologies, 2012, 18(2), 151. 52 Fu Q, Ran G, Xu W. RSC Advances, 2015, 5(47), 37512. 53 Patil G A, Bari M, Bhanvase B, et al. Chemical Engineering and Processing, 2012, 62, 69. 54 Zhang L, Wang Y, Tong L, et al. Langmuir, 2013, 29(50), 15719. 55 Li X, Visaveliya N, Hafermann L, et al. The Chemical Engineering Journal, 2017, 326(15), 1058. 56 Xu L, Peng J, Srinivasakannan C, et al. RSC Advances, 2014, 4(48), 25155. 57 Song Y, Modrow H, Henry L, et al. Chemistry of Materials, 2006, 18(12), 2817. 58 Eluri R, Paul B. Journal of Nanoparticle Research, 2012, 14(4), 800. 59 Pekkari A, Say Z, Susarrey-Arce A, et al. ACS Applied Materials & Interfaces, 2019, 11(39), 36196. 60 Zeng C, Wang C, Wang F, et al. Chemical Engineering Journal, 2012, 204-206(15), 48. 61 Yang M, Luo L, Chen G. AIChE Journal, 2020, 66(6), e16950. 62 Zhao S, Li Y Y, Stavitski E, et al. ChemCatChem, 2015, 7(22), 3683. 63 Iles A, Habgood M, Mello A, et al. Catalysis Letters, 2007, 114(1-2), 71. 64 Xu B B, Zhang R, Liu X Q, et al. Chemical communications, 2012, 48(11), 1680. 65 Liang Y, Pan Y, Wang C, et al. Chemical Engineering Journal, 2013, 219(1), 78. 66 Hoang P H, Yoon K B, Kim D, et al. RSC Advances, 2012, 2(12), 5323. 67 Jia Y, Wang J, Zhang K, et al. Microporous and Mesoporous Materials, 2017, 247, 103. 68 Debecker, D P, Solène L B, Boissière C, et al. Chemical Society Reviews, 2018, 47, 4112. 69 Wang X F, Niu X L, Qin M, et al. Journal of Functional Materials, 2022, 51(3), 03039(in Chinese). 王雪峰, 牛小连, 秦苗, 等. 功能材料, 2022, 51(3), 03039. 70 Shang C, Wu Z, Wu W, et al. ACS Applied Materials & Interfaces, 2019, 11(18), 16693. 71 Gangu K K, Maddila S, Mukkamala S, et al. Inorganica Chimica Acta, 2016, 446, 61. 72 Zhao Y, Xiang Z H. Journal of Chemical Industry and Engineering(China), 2020, 71(6), 99 (in Chinese). 赵云, 向中华. 化工学报, 2020, 71(6), 99. 73 Sheng B C, Li C, Liu Y Y, et al. Chemical Research in Chinese Universities, 2019, 40(7), 35 (in Chinese). 盛炳琛, 李从, 刘颖雅, 等. 高等学校化学学报, 2019, 40(7), 35. 74 Faustini M, Kim J, Jeong G Y, et al. Journal of the American Chemical Society, 2013, 135(39), 14619. 75 Zhu L Y, Wang W, Ju X J, et al. Chemical Industry and Engineering Progress, 2014, 33(9), 2229 (in Chinese). 褚良银, 汪伟, 巨晓洁, 等. 化工进展, 2014, 33(9), 2229. 76 Ke T, Zeng X F, Wang J X, et al. Journal of Nanoscience and Nanotechnology, 2011, 11(6), 5154. 77 Zhang T, Zhang X, Yan X, et al. Chemical Engineering Journal, 2013, 228(15), 398. 78 Tai S J, Sheng D H, Yang J, et al. Contemporary Chemical Industry, 2015, 237(10), 2300 (in Chinese). 邰石君, 盛东海, 杨君, 等. 当代化工, 2015, 237(10), 2300. |
|
|
|