POLYMERS AND POLYMER MATRIX COMPOSITES |
|
|
|
|
|
Research Progress on Hydrophobic Modification and Application of Biomass Aerogels |
ZHAI Junjun1, ZHAO Si1, XIAO Qinjian1, LI Yue1, WANG Wei1, XU Guigui1, LI Cao2,*, KUANG Ying1,*
|
1 College of Bioengineering and Food Science, Hubei University of Technology, Wuhan 430068, China 2 School of Materials Science and Engineering, Hubei University, Wuhan 430062, China |
|
|
Abstract With the concept of sustainable development gradually becoming a global consensus, the exploitation of ‘environmental friendliness' and ‘sustainable development' biological renewable resources has been increasingly concerned. The biomass aerogel made from natural biomass material is a new kind of green and environment-friendly porous material. They have excellent properties which are not inferior to that of traditional aerogels, such as high compressive strength, high elasticity, low apparent density, high porosity and high specific surface area. More importantly, they also have the unique advantages of wide source of raw materials, green,non-toxicity, good biocompatibility and biodegradability, which have attracted wide attention from the fields of energy, environment, electronics and biomedicine. However, due to the presence of hydrophilic groups (such as hydroxyl and carboxyl groups) on the surface of most biomass materials, the biomass aerogels are prone to have water absorption during practical use, resulting in the collapse of aerogel structure and the weakening of mechanical properties, and this can greatly reduce their industrial application performance. Therefore, in recent years, researchers have been trying to conduct proper hydrophobic treatments of biomass aerogels, as well as making detailed and in-depth research on the mechanisms of hydrophobicity modifications, and have achieved fruitful results. At present, the hydrophobic modification methods of aerogels include in-situ method, vapor deposition, surface post-treatment and cold plasma technology. The introduction of these hydrophobic modification methods can not only ensure that the biomass aerogels have the advantages of green environmental protection, but also significantly improve their moisture resistance and application stability, and further expand their application. In this paper, the preparation methods of several common biomass aerogels and their research progress in hydrophobicity modification are systematically reviewed from the perspectives of different compositions and sources, and their applications prospect in the fields of adsorption, heat insulation, drug carrier, photocatalysis, biosensor and electrical fields are also presented, so as to provide innovative ideas for the preparation of new biomass aerogels with good application stability and environmental friendliness.
|
Published:
Online: 2022-12-09
|
|
Fund:Natural Science Foundation of Hubei Province(2022CFB461),HBUT National “111” Center for Cellular Regulation and Molecular Pharmaceutics 2022 Collaborative Grant(XBTK-2022006),National Natural Science Foundation of China(31401498, 51773055). |
|
|
1 Kistler S S.Nature, 1931, 127(3211), 741. 2 Stergar J, Maver U.Journal of Sol-Gel Science and Technology, 2016, 77(3), 738. 3 Dong L X. Preparation and characterization of nanometer silica. Master's Thesis, Hebei University, China, 2005 (in Chinese). 董力新. 纳米二氧化硅的制备与表征. 硕士学位论文, 河北大学, 2005. 4 Liu S L, Yu T F, Hu N N, et al.Colloids and Surfaces A-Physicochemical and Engineering Aspects, 2013, 439, 159. 5 Jiang F, Hsieh Y L.Journal of Materials Chemistry A, 2014, 2(18), 6337. 6 Ubeyitogullari A, Ciftci O N.Carbohydrate Polymers, 2016, 147, 125. 7 Alnaief M, Alzaitoun M A, García-González C A, et al.Carbohydrate Polymers, 2011, 84(3), 1011. 8 Ni X, Ke F, Xiao M, et al.International Journal of Biological Macromo-lecules, 2016, 92, 1130. 9 Wang Y X, Chen X, Kuang Y, et al.Journal of Wuhan Institute of Technology, 2017, 39(5), 443 (in Chinese). 王亦欣, 陈茜, 匡映, 等. 武汉工程大学学报, 2017, 39(5), 443. 10 Zhang Z, Wang X D, Wu Y, et al.Journal of the Chinese Ceramic Society, 2018, 46(10), 1426 (in Chinese). 张泽, 王晓东, 吴宇, 等. 硅酸盐学报, 2018, 46(10), 1426. 11 Kleemann C, Selmer I, Smirnova I, et al.Food Hydrocolloids, 2018, 83, 365. 12 Latifi F, Talebi Z, Khalili H, et al.Materials Research Express, 2018, 5(5), 055020. 13 Kim S, Seo J, Cha J, et al.Construction and Building Materials, 2013, 40(3), 501. 14 Sachithanadam M, Joshi S.Gels, 2016, 2(1), 11. 15 Asim N, Badiei M, Alghoul M A, et al.Industrial & Engineering Chemistry Research, 2019, 58(38), 17621. 16 Hüsing N, Schwertfeger F, Tappert W, et al. Journal of Non-Crystalline Solids, 1995, 186(6), 37. 17 Li W. Studies on the silica aerogel nanomaterial prepared by sol-gel method. Master's Thesis, Xiangtan University, China, 2002 (in Chinese). 李伟. 溶胶-凝胶法制备二氧化硅气凝胶纳米材料的研究. 硕士学位论文, 湘潭大学, 2002. 18 Liu C, Zhu L, Bu W, et al. Micron, 2018, 107, 94. 19 Bhushan B, Jung, Y C.Progress in Materials Science, 2011, 56(1), 1. 20 Guo Z, Liu W, Su B L.Journal of Colloid and Interface Science, 2011, 353(2), 335. 21 Nosonovsky M, Bhushan B. Multiscale dissipative mechanisms and hierarchical surfaces, Springers, 2008, pp.978. 22 Young T.Philosophical Transactions of the Royal Society of London, 1805, 95, 65. 23 Wenzel, Robert N.Journal of Physical & Colloid Chemistry, 1949, 53(9), 1466. 24 Ramiasa-MacGregor M, Mierczynska A, Sedev R, et al.Nanoscale, 2016, 8(8), 4635. 25 Milionis A,Loth E, Bayer I S. Advances in Colloid and Interface Science, 2016, 229, 57. 26 Cassie A, Baxter S.Transactions of the Faraday Society, 1944, 40, 546. 27 Gao L, Mccarthy T J.Langmuir, 2006, 22(7), 2966. 28 Li L, Roethel S, Breedveld V, et al.Cellulose, 2013, 20(6), 3219. 29 Zuo K M, Li J, Guan Q S, et al.New Chemical Materials, 2019, 47(4), 217 (in Chinese). 左克曼, 李建, 管庆顺, 等. 化工新型材料, 2019, 47(4), 217. 30 Zhang H, Gao H K, Wang Z, et al.Biomass Chemical Engineering, 2019,51(1),61 (in Chinese). 张恒, 高洪坤, 王哲, 等. 生物质化学工程, 2019, 53(1), 61. 31 Tabernero A, Baldino L, Misol A, et al.Carbohydrate Polymers, 2020, 233, 115850. 32 Wang X, Zhu K M, Peng C X, et al.Materials Reports, 2019, 33(Z1), 476 (in Chinese). 王雪, 朱昆萌, 彭长鑫, 等. 材料导报, 2019, 33(Z1), 476. 33 Du Q, Xu X H, Lin P C, et al.E-Journal of Translational Medicine, 2017, 4(4), 78 (in Chinese). 杜清, 许晓辉, 林鹏程, 等. 转化医学电子杂志, 2017, 4(4), 78. 34 Wang Y, Su Y, Wang W, et al.Carbohydrate Polymers, 2019, 226, 115242. 35 Liu H, Geng B, ChenY, et al. ACS Sustainable Chemistry & Enginee-ring, 2016, 5(1), 49. 36 Xu X, Dong F, Yang X, et al. Journal of Agricultural and Food Chemistry, 2019, 67(2), 637. 37 Li Z, Qiu J, Shi Y, et al. Cellulose, 2018, 25(5), 2987. 38 He X, Chen T, Jiang T, et al. Carbohydrate Polymers, 2021, (4), 117790. 39 Liu H Z, Chen Y F, Geng B Y, et al. Acta Polymerica Sinica, 2016, (5), 545. 40 Wang J, Liu S.Separation and Purification Technology, 2019, 221, 303. 41 Jiang F, Hsieh Y L.ACS Omega, 2018, 3, 3530. 42 Wang H Y, Gong Y T, Wang Y. RSC Advances, 2014, 4(86), 45753. 43 De France K J, Hoare T, Cranston E D.Chemistry of Materials, 2017, 29(11), 4609. 44 Lavoine N, Bergstrm L.Journal of Materials Chemistry A, 2017, 5(31), 16105. 45 Budtova T.Cellulose, 2019, 26(1), 81. 46 Mi H Y, Jing X, Politowicz A L, et al.Carbon, 2018, 132, 199. 47 Cervin N T, Aulin C, Larsson P, et al.Cellulose, 2012, 19(2), 401. 48 Fumagalli M, Ouhab D, Boisseau S M, et al.Biomacromolecules, 2013, 14(9), 3246. 49 Gu H, Zhou X,Lyu S, et al. Journal of Colloid and Interface Science, 2019, 560, 849. 50 Sai H, Fu R, Xing L, et al.ACS Applied Materials & Interfaces, 2015, 7(13), 7373. 51 Fauziyah M, Widiyastuti W, Setyawan H.IOP Conference Series Materials Science and Engineering, 2020, 778, 012019. 52 Hu Z, Berry R M, Pelton R, et al.ACS Sustainable Chemistry & Engineering, 2017, 5, 5018. 53 Zaman A, Huang F, Jiang, M, et al. Energy and Built Environment, 2020, 1(1), 60. 54 Li D, Wang Y, Sun Y, et al. Carbon, 2018, 137, 31. 55 Qin J, Chen L, Zhao C, et al. Journal of Materials Science, 2017, 52(14), 8455. 56 Zhou J, Hsieh Y L. ACS Applied Materials & Interfaces, 2018, 10(33), 27902. 57 Fatemeh R, Maleksadat H, Mehdi J, et al. Cellulose, 2018, 25, 4695. 58 Guo W, Wang X, Zhang P, et al. Carbohydrate Polymers, 2018, 195, 71. 59 Wang L J, Zhao T Y, Gong Y M, et al.Modern Chemical Industry, 2021(6),86(in Chinese). 王莉娟, 赵彤瑶, 宫玉梅, 等. 现代化工, 2021(6),86. 60 Shi W A, Ycc A, Cheng H.Carbohydrate Polymers, 2019, 231, 115744. 61 Lopez-Iglesias C, Barros J, Ardao I, et al. Carbohydrate Polymers, 2019, 204, 223. 62 Bidgoli H, Khodadadi A A, Mortazavi Y. Journal of Environmental Chemical Engineering, 2019, 7(5), 103340. 63 Philippova O E, Korchagina E V.Polymer Science Series A, 2012, 54(7), 552. 64 Aranaz I, Harris R, Heras A.Current Organnic Chemistry, 2010, 14(3), 308. 65 Mourya V K, Inamdar N N.Reactive and Functional Polymers, 2008, 68(6), 1013. 66 Tang W, Liu Z Y, Li Y, et al.Technology Innovation and Application, 2019(15), 10 (in Chinese). 唐伟, 刘志研, 李耀, 等. 科技创新与应用, 2019(15), 10. 67 Yao K D, Li J J, Yao F L, et al. Chitosan-based hydrogels functions and applications, CRC Press, US, 2011. 68 Bidgoli H, Zamani A, Taherzadeh M J. Carbohydrate Research, 2010, 345(18), 2683. 69 Dongre R. In: Chitin-Chitosan Myriad Functionalities in Science and Technology, US, 2018, pp. 1331. 70 Elanchezhiyan S S, Meenakshi S.International Journal of Biological Macromolecules, 2017, 104(SI), 1586. 71 Su C, Yang H, Zhao H, et al. Chemical Engineering Journal, 2017, 330, 423. 72 Bidgoli H, Mortazavi Y, Khodadadi A.Journal of Hazardous Materials, 2019, 366, 229. 73 Yin Z C, Sun X, Bao M T, et al.International Journal of Biological Macromolecules, 2020, 165(Pt B), 1869. 74 Yin Z C, Liu W, Bao M T, et al.Journal of Applied Polymer Science, 2021, 138(20), e50461. 75 Hu J, Zhu J, Ge S, et al.Surface and Coatings Technology, 2020, 385, 125361. 76 Hu J, Zhu J D, Ge S Z, et al.Surface and Coatings Technology, 2020, 385, 125361. 77 Zhou D, Ke W C, Chen Y K, et al.Journal of Functional Materials, 2013, 44(B06), 161 (in Chinese). 周丹, 柯炜昌, 陈义坤,等. 功能材料, 2013, 44(B06), 161. 78 Wang Y X, Chen X, Kuang Y, et al.International Journal of Low-Carbon Technologies, 2018, 13(1), 67. 79 Wang W L, Fang Y, Ni X W, et al.Carbohydrate Polymers, 2019, 224, 115129. 80 He L C. Fabricatiom and adsorption properties of amphoteric konjac glucomannan aerogels. Master's Thesis, Soochow University, China, 2018 (in Chinese). 贺成林. 两性魔芋葡甘聚糖气凝胶的制备及吸附性能研究. 硕士学位论文, 苏州大学, 2018. 81 Lian J, Li J, Wang L, et al.Nano, 2018, 13(10), 7. 82 Chen T, Li M, Zhou L, et al.ACS Sustainable Chemistry & Engineering, 2020, 8(16), 6458. 83 Zhu F.Trends in Food Science & Technology, 2019, (89), 1. 84 Du Tran T, Nguyen S T, Do N D, et al.Materials Chemistry and Physics, 2020, 253, 123363. 85 Milovanovic S, Jankovic-Castvan I, Ivanovic J, et al.Starch-Starke, 2015, 67(1-2), 174. 86 Wang L, Sánchez-Soto M, Abt T, et al.Polymer International, 2016, 65(8), 899. 87 Villegas M, Oliveira A L, Bazito R C, et al.Journal of Supercritical Fluids, 2019, 154, 104592. 88 Baudron V, Taboada M, Gurikov P, et al.Colloid and Polymer Science, 2020, 298(4), 477. 89 Kubicka M, Bakierska M, Chudzik K,et al. Nanomaterials, 2020, 10(9), 1811. 90 Cheng Y. Alginate-based aerogels: preparation, reinforcement and hydrophobic modification. Master's Thesis, Hainan University, China, 2012 (in Chinese). 成一. 海藻酸钠基气凝胶的制备、补强与疏水改性. 硕士学位论文, 海南大学, 2012. 91 Tang M W. Preparation and Properties of Functional Sodium Alginate based Aerogels. Master's Thesis, Qingdao University, China, 2019 (in Chinese). 唐茂文. 功能性海藻酸钠基气凝胶的制备及性能研究. 硕士学位论文, 青岛大学, 2019. 92 Dai J G. Biomass TiO2/alginate composite aerogels: fabrication and their applications in water Treatment. Master's Thesis, Fujian Agriculture and Forestry University, China, 2019 (in Chinese). 戴举国. TiO2/藻酸盐生物质复合气凝胶的制备及水处理应用. 硕士学位论文, 福建农林大学, 2019. 93 Yang J, Xia Y, Xu P, et al.Cellulose, 2018, 25(6), 3533. 94 Zhang Y, Zhu J, Hongbo R, et al. Journal of Sol-Gel Science and Technology, 2017, 83(1), 44. 95 Li Y. Synthesis, modification and properties of alginate-silica composite aerogels. Master's Thesis, Tianjin University, China, 2016 (in Chinese). 李芸. 海藻酸钠-二氧化硅复合气凝胶的制备、改性及其性能研究. 硕士学位论文, 天津大学, 2016. 96 Zhang X, Liu M, Wang H, et al.Carbohydrate Polymers, 2019, 208, 232. 97 Zhang X, Wang H, Cai Z, et al.ACS Sustainable Chemistry & Enginee-ring, 2018, 7(1), 332. 98 Liu X X, Liu Z M.Biomass Chemical Engineering, 2016, 50(2), 39 (in Chinese). 刘昕昕, 刘志明. 生物质化学工程, 2016, 50(2), 39. 99 Zhai J X. Study on the synthesis of starch-silica aerogels via ambient pressure drying process. Master's Thesis, Dalian University of Technology, China, 2019 (in Chinese). 翟界秀. 常压干燥制备淀粉-SiO2气凝胶的研究. 硕士学位论文, 大连理工大学, 2019. 100 Ma Q, Liu Y, Dong Z, et al.Journal of Applied Polymer Science, 2015, 132(15), 41770. 101 El Kadib A, Bousmina M.Chemistry-A European Journal, 2012, 18(27), 8264. 102 Korhonen J T, Kettunen M, Ras R H A, et al. ACS Applied Materials & Interfaces, 2011, 3(6), 1813. 103 Yuan D S, Zhang T, Guo Q, et al.Chemical Engineering Journal, 2018, 351, 622. 104 Zhu J D, Hu J, Jiang C W, et al.Carbohydrate Polymers, 2019, 207, 246. 105 Ren W, Wei Z, Xia X, et al. Journal of Nanoparticle Research, 2020, 22(7), 191. 106 Li W, Shi J, Zhao Y, et al. ACS Sustainable Chemistry & Engineering, 2020, 8(4), 1831. 107 Zhu L, Zong L, Wu X, et al. ACS Nano, 2018, 12(5), 4462. 108 Zhu Y, Yang X, Cranston E D, et al.Advanced Materials, 2016, 28(35), 7652. 109 Ding L G, Yao B J, Fei L, et al.Journal of Materials Chemistry A, 2019, 7(9), 4689. 110 Chung H, Washburn N R.ACS Applied Materials & Interfaces, 2012, 4(6), 2840. 111 Meng Y, Lu J, Cheng Y, et al.International Journal of Biological Macromolecules, 2019, 135, 1006. 112 Li X, Zheng Y.Biotechnology Progress, 2019, 36(4), e2922. 113 Passauer L, Hallas T, Bäucker E, et al.ACS Sustainable Chemistry & Engineering, 2015, 3(9), 1955. 114 Feofilova E P, MysyakinaI S. Applied Biochemistry and Microbiology, 2016, 52(6), 573. 115 Guo J, Fang W, Welle A, et al.ACS Applied Materials & Interfaces, 2016, 8(49), 34115. 116 Collins M N.International Journal of Biological Macromolecules, 2019, 135, 560. 117 Meng Y, Liu T, Yu S, et al. Fuel, 2020, 278, 118376. 118 Brunow G, Lundquist K.Holzforschung-International Journal of the Biology, Chemistry, Physics and Technology of Wood, 1991, 45(1), 37. 119 Liu Y, Li K.Journal of Adhesion, 2006, 82(6), 593. 120 Jin F, Fan M H, Jia Q F, et al. Journal of Chemical Physics, 2017, 30(3), 348. 121 Sato H, Guengerich F P.Journal of the American Chemical Society, 2000, 122(33), 8099. 122 Truter P, Pizzi A, Vermaas H.Journal of Applied Polymer Science, 1994, 51(7), 1319. 123 Chen Y, Zhang H, Zhu Z, et al. International Journal of Biological Macromolecules, 2020, 152, 775. 124 Matsushita Y, Yasuda S.Journal of Wood Science, 2003, 49(2), 166. 125 Pan H, Sun G, Zhao T.International Journal of Biological Macromolecules, 2013, 59, 221. 126 Chatterjee S, Saito T. Chemsuschem, 2015, 8(23), 3941. 127 Gong Y T, Li M, Tian X F, et al.Liaoning Chemical Industry, 2019,48(3), 254 (in Chinese). 宫玉辉, 李萌, 田雪峰,等. 辽宁化工, 2019, 48(3), 254. 128 Wang C, Xiong Y, Fan B, et al.Scientific Reports, 2016, 6, 32383. 129 Meng Y, Liu X, Li C, et al.International Journal of Biological Macromolecules, 2019, 135, 815. 130 Jiang J, Zhang Q, Zhan X, et al.ACS Sustainable Chemistry & Engineering, 2017, 5(11), 10307. 131 Yang Y, Deng Y, Tong Z, et al. ACS Sustainable Chemistry & Engineering, 2014, 2(7), 1729. 132 Chen C, Li F, Zhang Y, et al.Chemical Engineering Journal, 2018, 350, 173. 133 Arboleda J C, Hughes M, Lucia L A, et al.Springer Journal, 2013, 20(5), 2417. 134 Yun Y S, Cho S Y, Jin H J, et al. Macromolecular Research, 2014, 22(5), 509. 135 Selmer I, Kleemann C, Kulozik U, et al.The Journal of Supercritical Fluids, 2015, 106, 42. 136 Alatalo S M, Qiu K, Preuss K, et al.Carbon, 2016, 10, 622. 137 Kleemann C, Schuster R, Rosenecker E,et al. Food Hydrocolloids, 2020, 101, 105534. 138 Xia T L. Study on the preparation, modification and application of whey protein aerogel. Master's Thesis, Jiangnan University, China, 2018 (in Chinese). 夏天利. 乳清蛋白气凝胶的制备、改性及应用研究. 硕士学位论文, 江南大学, 2018. 139 Fitzpatrick S E, Deb-Choudhury S, Ranford S, et al. Journal of Materials Science, 2020, 55(11), 4848. 140 Ahmadi M, Madadlou A, Saboury A A.Food Chemistry, 2016, 196(1), 1016. 141 Kaya M, Tabak A.Journal of Polymers and the Environment, 2019, 28(1), 323. 142 Zhu L, Wang Y, Wang Y, et al. Microporous & Mesoporous Materials, 2017, 241, 285. 143 Jing Z, Ding J, Zhang T, et al. Food and Bioproducts Processing, 2019, 115,134. 144 Han S, Sun Q, Zheng H, et al. Carbohydrate Polymers, 2016, 136, 95. 145 Lei E, Li W, Ma C, et al. Materials Chemistry and Physics, 2018, 214, 291. 146 Wang Y, Zhu L, Zhu F, et al.Journal of the Taiwan Institute of Chemical Engineers, 2017, 78, 351. 147 Yang W J, Yuen A C Y, Li A, et al. Cellulose, 2019, 26(11), 6449. 148 Wu X D, Song Z H, Wang W, et al. Journal of Nanjing Tech University(Natural Science Edition), 2020, 42(4), 405 (in Chinese). 吴晓栋, 宋梓豪, 王伟, 等. 南京工业大学学报(自然科学版), 2020, 42(4), 405. 149 Mu R J, Pang J, Wang M, et al.Journal of Tropical Biology, 2016, 7950, 164 (in Chinese). 穆若郡, 庞杰, 王敏, 等. 热带生物学报, 2016, 7(2), 164. 150 Lu Y Q, Yuan W Z.ACS Applied Materials & Interfaces, 2017, 9(34), 29167. 151 Yu R, Shi Y Z, Yang D Z, et al.ACS Applied Materials & Interfaces, 2017, 9(26), 21809. 152 Liu Y, Xiong, Q, Song H, et al.Cellulose, 2019, 26(4), 2573. 153 Wang L, Mu R J, Lin L Z, et al.International Journal of Biological Macromolecules, 2019, 133, 693. 154 García-González C A, Jin M, Gerth J, et al.Carbohydrate Polymers, 2015, 117, 797. 155 Rudaz C, Courson R, Bonnet L, et al. Biomacromolecules, 2014, 15 (6), 2188. 156 Réti C, Casetta M, Duquesne S, et al.Polymers for Advanced Technologies, 2010, 19(6), 628. 157 Han F, Liu Q, Lai X, et al.Progress in Organic Coatings, 2014, 77(5),975. 158 Shen D K, Gu S, Bridgwater A V.Carbohydrate Polymers, 2010, 82(1), 39. 159 Shang K, Liao W, Wang J, et al.ACS Applied Materials & Interfaces, 2016, 8, 643. 160 Xiao Y, Zheng Y, Wang X, et al.Journal of Applied Polymer Science, 2014, 131(19), 40845. 161 Kaya M.Journal of Applied Polymer Science, 2017, 134(38), 45315. 162 Han Y, Zhang X, Wu X, et al.ACS Sustainable Chemistry & Enginee-ring, 2015, 3(8), 1853. 163 Wei W, Hu H, Huang Z, et al. Journal of Supercritical Fluids, 2019, 147, 33. 164 Briscoe J, Marinovic A, Sevilla M, et al. Angewandte Chemie-International Edition, 2015, 54(15), 4463. 165 Marinovic A, Kiat L S, Dunn S, et al. Chemsuschem, 2017, 10(5), 1004. 166 Djellabi R, Zhang L Q, Yang B, et al. Separation & Purification Technology, 2019, 229, 115830. 167 Li P, Kong C, Shang Y, et al.Nanoscale, 2013, 5(18), 8472. 168 Nevoltris D, Lombard B, Dupuis E, et al.ACS Nano, 2015, 9(2), 1388. 169 Gao N, Zhou W, Jiang X, et al.Nano Letters, 2015, 15(3), 2143. 170 Zhao M, Cai B, Ma Y, et al.Nanoscale, 2014, 6(8), 4052. 171 Srivastava S, Kumar V, Ali M A, et al.Nanoscale, 2013, 5(7), 3043. 172 Li Y, Zhao M, Chen J, et al. Sensors and Actuators B: Chemical, 2016, 232, 750. 173 Sun Q, Xu M, Bao S J, et al. Nanotechnology, 2015, 26(11), 115602. 174 Li R, Cui F, Zhu H, et al. Biosensors & Bioelectronics, 2018, 119, 156. 175 Sun Y, Lin Y, Sun W, et al. Analytica Chimica Acta, 2019, 1089, 152. 176 Huang J, Li D, Zhao M, et al. Chemical Engineering Journal, 2019, 373, 1357. 177 Sui Z, Meng Y, Xiao P, et al. ACS Applied Materials & Interfaces, 2015, 7, 1431. 178 Huang H, Liu C, Zhou D, et al. Journal of Materials Chemistry A, 2015, 3, 4983. 179 Butt M T Z, Preuss K, Titirici M M, et al. Materials, 11(7), 1171. 180 Wang J, Jin Y, Zhao C, et al.Applied Surface Science, 2018, 458(15), 1035. 181 Zhao H B, Yuan L, Fu Z B, et al. ACS Applied Materials & Interfaces, 2016, 8(15), 9917. 182 Li J, Wang X, Wang H, et al. Environmental Science Nano, 2017, 4(5), 1114. |
|
|
|