INORGANIC MATERIALS AND CERAMIC MATRIX COMPOSITES |
|
|
|
|
|
Size Effect of Foam Concrete Subjected to Quasi-static Compression |
ZHOU Hongyuan1,2, WANG Yebin1, WANG Xiaojuan1, SHI Nannan1
|
1 Key Laboratory of Urban Security and Disaster Engineering of Ministry of Education, Beijing University of Technology, Beijing 100124, China 2 State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, China |
|
|
Abstract The quasi-static compression tests were conducted on foam concrete specimens with different densities (450 kg/m3, 750 kg/m3, 1 050 kg/m3, and 1 350 kg/m3) and sizes (50 mm×50 mm×50 mm, 100 mm×100 mm×100 mm, 150 mm×150 mm×150 mm and 200 mm×200 mm×200 mm), to investigate the size effect of foam concrete subjected to quasi-static compression. Firstly, by observing the crack propagation in specimens during the test, it is found that the first crack is more likely to appear in the surrounding area from the central area with increasing size of specimens. Secondly, based on the experimental data, the obvious size effect of foam concrete is observed and the effect is more significant with increasing density. Then the relationship between compressive strength, compacting strain, specific energy absorption, and block size are investigated with experimental data. Moreover, three widely applied phenomenological constitutive models, namely Avalle model, Wang mo-del, and Li model, are compared with the experiment data, and it is found that the Wang model is able to provide a good prediction. Therefore, based on the Wang model, damage index and Bažant dimension effect law are introduced to study the relationship between plateau stress and size, and a one-dimensional damage phenomenological constitutive model based on the density and size of foam concrete is established.
|
Published: 30 September 2021
|
|
Fund:This work was financially supported by the National Key Research and Development Program (2019YFD1101005), the National Natural Science Foundation of China (51808017, 51778028), the General Project of Science and Technology of Beijing Municipal Education Commission (KM201810005019). |
About author:: Hongyuan Zhou received his Ph.D. degree from Nanyang Technological University, Singapore in 2012. He is currently a professor in Faculty of Architecture, Civil and Transportation Engineering in Beijing University of Technology, focusing on the research in response and protection of structures subjected to extreme loading such as blast, impact and shock. |
|
|
1 Qian J S, Luo H, Wang Z.Journal of Building Meterials, 1998(2), 30(in Chinese).
钱觉时, 罗晖, 王智. 建筑材料学报, 1998(2), 30.
2 Su J. The research on the size effect of concrete behavior in compression. Ph.D Thesis, Hunan University, China, 2013 (in Chinese).
苏捷. 混凝土受压与受拉性能的尺寸效应研究. 博士学位论文, 湖南大学, 2013.
3 Zhang J, Yu Z P, Fan Z Y, et al. Concrete, 2019(12), 60(in Chinese).
张军, 余振鹏, 樊梓元,等. 混凝土, 2019(12), 60.
4 Wu T, Liu X, Wei H, et al.Journal of Building Structures, 2020, 41(6), 119(in Chinese).
吴涛, 刘喜, 魏慧,等. 建筑结构学报, 2020, 41(6), 119.
5 He J, Xu X X.Journal of Water Resources and Architectural Engineering, 2018, 16(4), 89(in Chinese).
何吉, 徐小雪.水利与建筑工程学报, 2018, 16(4), 89.
6 Jiang S Y, Tao S, Yao W L, et al. Materials Reports B: Research Papers, 2017, 31(12), 161(in Chinese).
江世永, 陶帅, 姚未来, 等. 材料导报:研究篇, 2017, 31(12), 161.
7 Zhang L, Yu Z P, Shen L, et al. New Building Materials, 2019, 46(3), 18(in Chinese).
张丽, 余振鹏, 沈丽,等. 新型建筑材料, 2019, 46(3), 18.
8 Li B Y, Wu B Y, She Y X, et al. Building Science, 2020, 36(3), 38(in Chinese).
李搏宇, 吴炳延, 佘跃心, 等. 建筑科学, 2020, 36(3), 38.
9 Wang Z H, Liu D, Yuan F F, et al. Acta Materiae Compositae Sinica, 2019, 36(5), 1275(in Chinese).
王作虎, 刘杜, 袁非凡,等. 复合材料学报, 2019, 36(5), 1275.
10 Ye C, Li J H, Gu J F, et al.Industrial Construction, 2020, 50(2), 177(in Chinese).
叶超, 李俊华, 顾炬锋, 等. 工业建筑, 2020, 50(2), 177.
11 Zhou J H, Kang T B, Wang F C, et al. Journal of Shenyang Jianzhu University(Natural Science), 2018, 34(6), 1036(in Chinese).
周静海, 康天蓓, 王凤池, 等. 沈阳建筑大学学报(自然科学版), 2018, 34(6), 1036.
12 Zhang G J. Journal of Architecture and Civil Engineering, 2019, 36(5), 119(in Chinese).
张国军.建筑科学与工程学报, 2019, 36(5), 119.
13 Ye S.Journal of Yancheng Institute of Technology(Natural Science Edition), 2019, 32(2), 74(in Chinese).
叶生.盐城工学院学报(自然科学版), 2019, 32(2), 74.
14 Wang Z H, Shen S Y, Cui Y Q, et al.Journal of Harbin Institute of Technology, 2020, 52(8), 112(in Chinese).
王作虎, 申书洋, 崔宇强, 等. 哈尔滨工业大学学报, 2020, 52(8), 112.
15 Fu L, Zheng J L, Wang D F. Journal of Vibration and Shock, 2021, 40(13), 299(in Chinese).
付李, 郑家乐, 王登峰. 振动与冲击, 2021, 40(13), 299.
16 Jin L, Yu W X, Du X L, et al. International Journal of Impact Enginee-ring, 2019, 125, 1.
17 Jin L, Yang W X, Yu W X, et al. Engineering Mechanics, 2020, 37(3), 56(in Chinese).
金浏, 杨旺贤, 余文轩, 等. 工程力学, 2020, 37(3), 56.
18 Huang H Y, Zhang Z M.Conrete, 2004(3), 8(in Chinese).
黄海燕, 张子明. 混凝土, 2004(3), 8.
19 Bažant Z P.Journal of Engineering Mechanics, 1984, 110(4), 518.
20 Carpinteri A, Ferro G. Materials and Structures, 1994, 174(27), 563.
21 Zhou M J, Wang N N, Zhao X Y, et al.Concrete, 2009(4), 104(in Chinese).
周明杰, 王娜娜, 赵晓艳, 等. 混凝土, 2009(4), 104.
22 Li W B. The comparison of foaming agent and the research of foam stability modification. Master's Thesis, Dalian University of Technology, China, 2009 (in Chinese).
李文博. 泡沫混凝土发泡剂性能及其泡沫稳定改性研究. 硕士学位论文, 大连理工大学, 2009.
23 Gai G Q, Xiao L G, Yin W H.Journal of Jilin Architectural and Civil Engineering Institute, 1999(2), 11(in Chinese).
盖广清, 肖力光, 殷维河. 吉林建筑工程学院学报, 1999(2), 11.
24 Zhou S E, Lu Z Y, Yan Y.Materials Reports, 2009, 23(6), 69(in Chinese).
周顺鄂,卢忠远,严云. 材料导报, 2009, 23(6), 69.
25 Qiao H H, Lu Z Y, Yan Y, et al. China Powder Science and Technology, 2008, 14(6), 38(in Chinese).
乔欢欢, 卢忠远, 严云, 等. 中国粉体技术, 2008, 14(6), 38.
26 Yang X F, Zhang Z Q, Yang J L, et al.Acta Armamentarii, 2017, 38(S1), 155(in Chinese).
杨先锋, 张志强, 杨嘉陵, 等. 兵工学报, 2017, 38(S1), 155.
27 Zhou H Y, Zhang X J, Wang X J, et al.Composite Structures, 2020, 239, 112025.
28 He S M. Study on the constitutive relationship of foam concrete.Master's Thesis, Jilin University, China, 2014 (in Chinese).
何书明. 泡沫混凝土本构关系的研究. 硕士学位论文, 吉林建筑大学, 2014.
29 Li H N, Liu P F, Li C, et al. Construction and Building Materials, 2019, 213, 20.
30 Su B Y, Zhou Z W, Zhang J J, et al.Rare Metal Materials and Enginee-ring, 2016, 45(3), 671(in Chinese).
苏步云, 周志伟, 张建军, 等. 稀有金属材料与工程, 2016, 45(3), 671.
31 Wang X J, Liu L, Jia K C, et al.Journal of Building Materials, 2021, 24(1), 207(in Chinese).
王小娟, 刘路, 贾昆程, 等. 建筑材料学报, 2021, 24(1), 207.
32 Liu H. Energy absorption and explosion proof ability of aluminum foam. Ph.D. Thesis, Northeastern University,China, 2014 (in Chinese).
刘欢. 泡沫铝材料的吸能与防爆特性研究. 博士学位论文, 东北大学, 2014.
33 Zhou H Y, Jia K C, Wang X J, et al.Acta Materiae Compositae Sinica, 2020, 37(8), 2005(in Chinese).
周宏元, 贾昆程, 王小娟, 等. 复合材料学报, 2020, 37(8), 2005.
34 Tan P J, Harrigan J, Reid S R.Materials Science and Technology, 2002, 18, 480.
35 Li G L, Guo W G, Zhao R, et al.Journal of Materials Science & Engineering, 2012, 30(3), 428(in Chinese).
李广良, 郭伟国, 赵融, 等. 材料科学与工程学报, 2012, 30(3), 428.
36 Su B Y. Mechanical properties and elastoplastic damage constitutive model for foamed concrete. Ph.D. Thesis, Taiyuan University of Technology,China, 2017 (in Chinese).
苏步云. 泡沫混凝土力学性能及其弹塑性损伤本构研究. 博士学位论文, 太原理工大学, 2017.
37 Avalle M, Belingardi G, Ibba A.International Journal of Impact Enginee-ring, 2007, 34(1), 3.
38 Wang Z H, Lin J, Zhao L M.Transactions of Nonferrous Metals Society of China, 2011, 21(3), 449.
39 Bažant Z P, Planas J.Fracture and size effect in concrete and other quasibrittle materials, CRC Press, Boca Raton, 1998, pp.13.
|
|
|
|