ENVIRONMENTAL CATALYTIC MATERIALS |
|
|
|
|
|
Research Progress of Manganese Dioxide Catalyst for Ozone Decomposition |
QIU Jing, ZHAO Ming, WANG Jianli, CHEN Yaoqiang
|
Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China |
|
|
Abstract Manganese oxides show diversity of properties with the change of structure and show unique advantages in the field of purification of atmospheric pollutants for example ozone decomposition. Ground ozone is a common atmospheric pollutant. Ozone will not only cause photochemical pollution, but also cause serious damage to human health due to its strong oxidation. It is very important to reduce the concentration of ground ozone. Ozone treatment methods include catalytic decomposition, liquid absorption, electromagnetic radiation, thermal decomposition, etc. Catalytic decomposition method is widely used because of low energy consumption and environment-friendly characteristics. Considering the performance, price and application background, manganese oxides is the main stream of ozone catalytic decomposition. The difference in structure can affect ability of catalyze ozone decomposition. The structures of manganese oxides are various, which has profound research significance. However, the performance of manganese oxides is also affected by water vapor during actual use. The higher the relative humidity, the more serious the catalyst deactivation. It is the goal of scholars to prepare manganese-based catalyst with excellent performance at low temperature, high humidity and high space velocity. This review summarizes the progress of manganese oxides in ozone catalytic decomposition in recent years, and focuses on the progress of single component manganese-based catalysts and composite oxide manganese-based catalysts, and briefly describes the effect of basic cations on the activity of manganese-based catalyst, and summarizes water vapor, carrier selection, space velocity can affect catalyst activity. What's more, this review points out existing problems, key points and development trend of catalytic ozone decomposition.
|
Published: 30 November 2021
|
|
Fund:Major Science and Technology Projects in Sichuan Province(2019ZDX0025), National Natural Science Foundation of China(21972098). |
About author:: Jing Qiu received a bachelor of science degree from Sichuan University in June 2019 and now she is a gra-duate student of the Institute of Catalytic Materials of Sichuan University. She is conducting research under the guidance of Professor Jianli Wang, and her main research direction is the catalytic decomposition of ground ozone. Jianli Wang is a backup candidate for the academic technology leader of Sichuan Province, director of National Engineering Laboratory for mobile source pollution control, member of Technical Committee of National Engineering Laboratory for mobile source pollution control, airector of Engineering Research Center, Ministry of Education, and he edited and compiled two undergraduate textbooks and one monograph. He has been engaged in the research of environmental catalysis, catalytic materials, vehicle exhaust purification catalyst and cracking catalyst. As the project leader, he is responsible for one of the First Key Research and Development Projects of the Ministry of Science and Technology of the People's Republic of China (2016YFC0204903), three Major National Defense Science and Technology Projects of General Program of NSFC (21972097), and a total of 15 projects. At present, he has officially published more than 60 SCI papers (corresponding author or first author papers), and won two first prizes of the Sichuan Science and Technology Progress Award (2013, 2017). |
|
|
1 Bell M L, Mcdermott A, Zeger S L. Jama, 2004, 292(19), 2372. 2 Mølhave L, Kjærgaard S K, Sigsgaard T, et al. Indoor Air, 2005, 15(6), 383. 3 Seltzer K M, Shindell D T,Malley C S.Environmental Research Letters, 2018, 13(10). 4 Mcdonald-Buller E C, Allen D T, Brown N, et al.Environmental Science & Technology, 2011, 45(22), 9484. 5 Fu J Y, Feng Y J, Zhong B, et al. Sichuan Environment , 2001(1), 37(in Chinese). 傅嘉媛, 冯易君, 钟兵,等. 四川环境, 2001(1), 37. 6 Pan H, Zhou L N, Zhu Y, et al.Chinese Journal of Catalysis, 2011, 32(6), 1040(in Chinese). 潘浩, 周丽娜, 朱艺, 等. 催化学报,2011, 32(6), 1040. 7 Li X T, Ma J Z, Zhang C B, et al.Journal of Environmental Sciences, 2019, 80, 159. 8 Dhandapani B,Oyama S T.Applied Catalysis B:Environmental, 1997, 11(2), 129. 9 Brock S L, Duan N L, Tian Z R, et al.Chemistry of Materials, 1998, 10(10), 2619. 10 Jia J B, Zhang P Y,Chen L.Applied Catalysis B: Environmental, 2016, 189, 210. 11 Radhakrishnan R, Oyama S T, Chen J G, et al.Journal of Physical Chemistry B, 2001, 105(19), 4245. 12 Setvin M, Aschauer U, Scheiber P, et al. Science,2013,341(6149), 988. 13 Ma J Z, Wang C X, He H.Applied Catalysis B: Environmental, 2017, 201, 503. 14 Zhu G X, Zhu J G, Jiang W J, et al.Applied Catalysis B: Environmental, 2017, 209, 729. 15 Jia J B, Zhang P Y, Chen L.Catalysis Science & Technology, 2016, 6(15), 5841. 16 Bai Y, Huang H, Wang C M, et al.Materials Chemistry Frontiers, 2017, 1(10), 1951. 17 Chen Y X, Gao J Y, Huang Z W, et al.Environmental Science & Techno-logy, 2017, 51(12), 7084. 18 Zhang Y J, Sun C T, Lu P, et al.Crystengcomm, 2012, 14(18), 5892. 19 Xie X W, Li Y, Liu Z Q, et al.Nature, 2009, 458(7239), 746. 20 Selvakumar K, Senthil Kumar S M, Thangamuthu R, et al.Journal of Physical Chemistry C, 2015, 119(12), 6604. 21 Luo J, Zhang Q H, Garcia-Martinez J, et al. Journal of the American Chemical Society, 2008, 130(10), 3198. 22 Huang H, Sithambaram S, Chen C H, et al. Chemistry of Materials, 2010, 22(12), 3664. 23 Yadav G D, Chandan P A, Tekale D P. Industrial & Engineering Chemistry Research, 2012, 51(4), 1549. 24 Meng X L, Li P, Du M M. Industrial & Engineering Chemistry Research, 2017, 56(30), 8428. 25 Wang C X, Ma J Z, Liu F D, et al.The Journal of Physical Chemistry C, 2015, 119(40), 23119. 26 Villegas J C, Garces L J, Gomez S, et al.Chemistry of Materials, 2005, 17(7), 1910. 27 Peng B, Bao W J, Wei L L, et al.Petroleum Science, 2019, 16(4), 912. 28 Ma J Z, Wang C X,He H.Applied Catalysis B: Environmental, 2017, 201, 503. 29 Liu S L, Ji J, Yu Y, et al. Catalysis Science & Technology, 2018, 8,4264. 30 Duan X C, Yang J Q, Gao H Y, et al.Crystengcomm, 2012, 14(12), 4196. 31 Spasova I, Nikolov P, Mehandjiev D.Ozone Science & Engineering, 2007, 29(1), 41. 32 Miao L, Wang J L,Zhang P Y.Applied Surface Science, 2018, 466, 441. 33 Li X T, Ma J Z, Yang L, et al.Environmental Science & Technology, 2018, 52(21), 12685. 34 Pahalagedara L R, Dharmarathna S,King'ondu C K, et al. The Journal of Physical Chemistry C, 2014, 118(35),20363. 35 PoudeuP F P, Takas N, Anglin C, et al. Journal of the American Chemical Society, 2010, 132(16), 5751. 36 Yi T F, Wu J Z, Li M, et al.RSC Advances, 2015, 5(47), 37367. 37 Guo N, Song Y H, You H P, et al.European Journal of Inorganic Che-mistry, 2010(29), 4636. 38 Genuino H C, Seraji M S, Meng Y T, et al.Applied Catalysis B: Environmental, 2015, 163, 361. 39 Shen X F, Morey A M, Liu J, et al.The Journal of Physical Chemistry C, 2011, 115(44), 21610. 40 Yang L, Ma J Z, Li X T, et al.Industrial & Engineering Chemistry Research, 2020, 59(1), 118. 41 Rao Y, Zeng D B, Cao X Z, et al.Ceramics International, 2019, 45(6), 6966. 42 Lian Z H, Ma J Z, He H.Catalysis Communications, 2015, 59, 156. 43 贺泓, 连志华, 马金珠, 等. 中国专利, CN102600861A,2012. 44 Jia J B, Yang W J, Zhang P Y, et al.Applied Catalysis A: General, 2017, 546, 79. 45 Chen X, Zhao Z L, Liu S, et al.Journal of Rare Earths, 2020, 38(2), 175. 46 Yang Y J, Zhang P Y, Jia J B.Applied Surface Science, 2019, 484, 45. 47 Vittadini A, Selloni A, Rotzinger F P, et al.Physical Review Letters, 1998, 81(14), 2954. 48 Selloni A.Nature Materials, 2008, 7(8), 613. 49 Rong S P, Zhang P Y, Liu F, et al.ACS Catalysis, 2018,8(4), 3435. 50 Yang Y J, Jia J B, Liu Y, et al.Applied Catalysis A: General, 2018, 562, 132. 51 Zhang N, Li X Y, Ye H C, et al.Journal of the American Chemical Society, 2016, 138(28), 8928. 52 Yang Z Z, Ford D C, Park J S, et al.Chemistry of Materials, 2017, 29(4), 1507. 53 Zhu S L, Wang J,Nie L H.ChemistrySelect, 2019, 4(41), 12085. 54 Gopi T, Swetha G, Shekar C, et al.Catalysis Communications, 2017, 92, 51. 55 Gopalakrishnan J,Bhat V. Inorganic Chemistry, 1987, 26(26), 4299. 56 Boppana V B R, Yusuf S, Hutchings G S, et al.Advanced Functional Materials, 2013, 23(7), 878. 57 Cao R R, Zhang P Y, Liu Y, et al.Applied Surface Science, 2019, 495, 143607. 58 Chin J, Walsdorff C, Stranix B, et al.Angewandte Chemie International Edition, 1999, 38(18), 2756. 59 Oyama S T.Catalysis Reviews, 2000, 42(3), 279. 60 Hou J T, Liu L L, Li Y Z, et al.Environmental Science & Technology, 2013, 47(23), 13730. 61 Tseng L-T, Lu Y H, Fan H M, et al.Scientific Reports, 2015, 5, 9094. 62 Yuan Y F, Zhan C, He K, et al.Nature Communications, 2016, 7, 13374. 63 Zhu G X, Zhu J L, Li W L, et al.Environmental Science & Technology, 2018, 52(15), 8684. 64 Hu B X, Chen C H, Frueh S J, et al.The Journal of Physical Chemistry C, 2010, 114(21), 9835. 65 Hong W, Zhu T L, Sun Y, et al.Environmental Science & Technology, 2019, 53(22), 13332. 66 Yang W J, Zhu Y F, You F, et al.Applied Catalysis B Environmental, 2018,233, 184. 67 Yuan Y F, He K, Byles B W, et al.Chem, 2019, 5(7),1793. 68 Einaga H, Harada M,Futamura S.Chemical Physics Letters, 2005, 408(4-6), 377. 69 Tsai W T, Chang C Y, Jung F H, et al.Journal of Environmental Science and Health, Part A, 1998, 33(8), 1705. 70 Liu Y, Yang W J, Zhang P Y, et al.Applied Surface Science, 2018, 442, 640. 71 Li L X, Zhang P Y, Cao R R.Catalysis Science & Technology, 2020, 10(7), 2254. 72 Robinson D M, Buelow M T, Alden L R, et al. US patent, US2017/0333842A1,2017. 73 Yu Q W, Zhao M, Liu Z M, et al.Chinese Journal of Catalysis ,2009, 30(1), 1(in Chinese). 余全伟, 赵明, 刘志敏,等. 催化学报, 2009, 30(1), 1. |
|
|
|