INORGANIC MATERIALS AND CERAMIC MATRIX COMPOSITES |
|
|
|
|
|
Research Progress on Microwave Dielectric Ceramics Prepared via Microwave Sintering |
LIU Jin, LIANG Bingliang, ZHANG Jianjun, AI Yunlong
|
School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang 330063, China |
|
|
Abstract With the gradual development of the communication industry, especially the advent of the 5G commercial era, the development and exploration of microwave dielectric ceramics have become a research hotspot in recent years. Normal pressure solid phase sintering is usually used to prepare microwave dielectric ceramics. However, this sintering method causes not only loss of resources but also abnormal growth of crystal grains, due to relatively high temperature, slow heating rate and long preparation time. In order to reduce the sintering temperature of the ceramic material, sintering additive (for example, B2O3 or CuO) was added, but the addition of sintering additive would introduce the second phase and deteriorate the microwave dielectric properties. As an efficient sintering method, microwave sintering can reduce the sintering temperature, shorten the sintering time and improve the microstructure of the material, because the materials are heated by the direct interaction of the microwave and the particles, or the coupling of microwave and the basic microstructure of materials. Therefore, microwave sintering has become the focus of many researchers. Microwave dielectric ceramics prepared by microwave sintering have been applied into various fields. For example, Mg2TiO4 ceramic is used for multilayer capacitors and microwave resonators, BaTiO3 ceramic is used for multilayer ceramic capacitors (MLCC) and random access memory (RAM), MgTiO3 ceramic is used for microwaves filters, communication antennas and microwave frequency global positioning systems, and TiO2 ceramic is used for capacitors and low-temperature co-fired ceramic substrates. Besides that, the microwave dielectric ceramics prepared by microwave sintering also show the characteristics of excellent chemical stability and mechanical properties, such as LiAlSiO4-based ceramics, MgO-B2O3-SiO2-based ceramics, etc. These ceramic materials are widely used in multilayer ceramic substrates and microwave integrated circuits. Microwave sintering technology provides the possibility to prepare materials with excellent performance. Microwave sintering technology can also be used for the preparation of various powders to achieve further improvement of performance. In this paper, the progress of microwave sintering in microwave dielectric ceramics is reviewed. The effects of conventional sintering and microwave sintering on properties are summarized. The current problems and development trends of microwave sintered microwave dielectric ceramics are pointed out.
|
Published:
Online: 2022-02-10
|
|
Fund:National Natural Science Foundation of China (51664043, 51861026) and the China Scholarship Council (201708360036). |
|
|
1 Plourde J K, Ren C L. IEEE Transactions on Microwave Theory and Techniques, 1981, 29(8), 754. 2 Petzelt J, Kamba S, Kozlov G V, et al. Ferroelectrics, 1996, 176(1), 145. 3 Shih C, Li W, Tung K, et al. Journal of the American Ceramic Society, 2010, 93(9), 2448. 4 Liao Q, Li L, Zhang P, et al. Journal of Materials Research, 2011, 26(19), 2503. 5 Guo Y, Ohsato H, Kakimoto K. Journal of the European Ceramic Society, 2006, 26(10), 1827. 6 Ohsato H, Kagomiya I, Terada M, et al. Journal of the European Ceramic Society, 2010, 30(2), 315. 7 Kagomiya I, Sugihara J, Kakimoto K, et al. Journal of Electroceramics, 2009, 22(1), 327. 8 Su Y S, Jean J H. Japanese Journal of Applied Physics, 2008, 47(9), 7254. 9 Tzou W C, Yang C F, Chen Y C, et al. Journal of the European Ceramic Society, 2000, 20(7), 991. 10 Bafrooei H B, Nassaj E T, Hu C F, et al. Physica B, Condensed Matter, 2014, 454, 35. 11 Huang X, Liu X, Liu F, et al. Journal of Advanced Ceramics, 2017, 6(1), 50. 12 Li E, Zou M, Duan S, et al. Journal of Electronic Materials, 2014, 43(11), 3954. 13 Mercurio J P, Manier M, Frit B. Ferroelectrics, 1992, 127(1), 35. 14 Yoshida A, Ogawa H, Kan A, et al. Journal of the European Ceramic Society, 2005, 25(12), 2897. 15 Noh J H, Jung H S, Lee J, et al. Journal of the European Ceramic Society, 2007, 27(8), 2937. 16 Chu L W, Hsiue G H, Chiang Y J, et al. Ferroelectrics, 2006, 332(1), 139. 17 Lee Y, Yeh Y, Tsai P. Journal of the European Ceramic Society, 2012, 32(8), 1725. 18 Croquesel J, Bouvard D, Chaix J, et al. Acta Materialia, 2016, 116, 53. 19 Zhang L X, Liu P, Su Z X. Materials Research Bulletin, 2006, 41(9), 1631. 20 Goldstein A, Kaplanb W D, Singurindi A. Journal of the European Cera-mic Society, 2002, 22, 1891. 21 Ramana M V, Kiran S R, Reddy N R, et al. Materials Chemistry and Physics, 2011, 126(1), 295. 22 Thridandapani R R, Folgar C E, Folz D C, et al. Journal of Nuclear Materials, 2009, 384(2), 153. 23 Liu H X, Ouyang S X. Microwave solid-phase synthesis methods and principles of inorganic materials, Science Press, China, 2006, pp.16 (in Chinese). 刘韩星,欧阳世翕. 无机材料微波固相合成方法与原理, 科学出版社, 2006, pp.16. 24 Ni E H. Microwave measurement of dielectric resonator, Science Press, China, 2006, pp.3 (in Chinese). 倪尔瑚. 介质谐振器的微波测量, 科学出版社, 2006, pp.3. 25 Li J G, Ikegami T, Lee J H, et al. Ceramics International, 2001, 27(4), 481. 26 Walker E H, Owens J W, Etienne M, et al. Materials Research Bulletin, 2002, 37(6), 1041. 27 Han D, Zhang J, Liu P, et al. Ceramics International, 2018, 44(10), 11101. 28 Obradović N, Fahrenholtz W G, Filipović S, et al. Ceramics Internatio-nal, 2019, 45(9), 12015. 29 Gómez I, Hernández M, Aguilar J, et al. Ceramics International, 2004, 30(6), 893. 30 Macaigne R, Marinel S, Goeuriot D, et al. Ceramics International, 2018, 44(17), 21107. 31 Yu J, Shen C Y. Electronic Components and Materials, 2015, 34(5), 1 (in Chinese). 余珺,沈春英. 电子元件与材料, 2015, 34(5), 1. 32 Zuo F, Badev A, Saunier S, et al. Journal of the European Ceramic Society, 2014, 34(12), 3103. 33 Li W B, Xi H H, Zhou D. Ceramics International, 2015, 41(7), 9063. 34 Benavente R, Borrell A, Salvador M D, et al. Ceramics International, 2014, 40(1), 935. 35 García M O, Fernández A, Khainakov S, et al. Scripta Materialia, 2010, 63(2), 170. 36 García M O, Kriven W M, Moya J S, et al. Journal of the American Ceramic Society, 2013, 96(7), 2039. 37 Benavente R, Salvador M D, Peñaranda-foix F L, et al. Ceramics International, 2015, 41(10), 13817. 38 García M O, Borrell A, Bittmann B, et al. Journal of the European Ceramic Society, 2011, 31(9), 1641. 39 George S, Anjana P S, Deepu V N, et al. Journal of the American Ceramic Society, 2009, 92(6), 1244. 40 Thomas D, Sebastian M T. Journal of the European Ceramic Society, 2012, 32(10), 2359. 41 Došler U, Krmanc M M, Suvorov D. Ceramics International, 2012, 38(2), 1019. 42 Krmanc M M, Došler U, Suvorov D. Journal of the European Ceramic Society, 2011, 31(13), 2211. 43 Sasikala T S, Suma M N, Mohanan P, et al. Journal of Alloys and Compounds, 2008, 461(1), 555. 44 Tsunooka T, Androua M, Higashida Y, et al. Journal of the European Ceramic Society, 2003, 23, 2573. 45 Keshavarz M, Ebadzadeh T, Banijamali S. Ceramics International, 2017, 43(12), 9259. 46 Surendran K P, Mohanan P, Sebastian M T. Journal of Solid State Che-mistry, 2004, 177(11), 4031. 47 Belous A, Ovchar O, Durilin D, et al. Journal of the American Ceramic Society, 2006, 89(11), 3441. 48 Bhuyan R K, Kumar T S, Pamu D. Ferroelectrics, 2017, 516(1), 173. 49 Huang C L, Chen J Y. Journal of the American Ceramic Society, 2009, 92(3), 675. 50 Xie Z P, Yang J L, Huang X D, et al. Journal of the European Ceramic Society, 1999, 19(3), 381. 51 Whittaker A G. Chemistry of Materials, 2005, 17(13), 3426. 52 Wang M N, Qiu T, Shen C H. Materials for Mechanical Engineering, 2009, 33(1), 23 (in Chinese). 王美娜,丘泰,沈春英. 机械工程材料, 2009, 33(1), 23. 53 Teoreanu I, Andronescu E, Folea A. Ceramics International, 1996, 22(4), 305. 54 Yang J, Xu W S. Inorganic Chemicals Industry, 2011, 43(4), 39 (in Chinese). 杨峻,徐旺生. 无机盐工业, 2011, 43(4), 39. 55 He Y Y, Tang X H, Zhou Y. Journal of Inorganic Materials, 2001, 16(6), 1139 (in Chinese). 何艳艳,唐霞辉,周毅. 无机材料学报, 2001, 16(6), 1139. 56 Okada T, Narita T, Nagai T, et al. American Mineralogist, 2008, 93(1), 39. 57 Linton J A, Fei Y W, Navrotsky A. American Mineralogist, 1999, 84(10), 1595. 58 Zhou X H, Yuan Y, Xiang L C, et al. Journal of Materials Science, 2007, 42(16), 6628. 59 Ferreira V M, Baptista J L, Petzelt J, et al. Journal of Materials Research, 1995, 10(9), 2301. 60 Jantunen H, Rautioaho R, Uusimäki A, et al. Journal of the European Ceramic Society, 2000, 20(14), 2331. 61 Sirugudu R K, Vemuri R K M, Murty B S. Journal of Microwave Power and Electromagnetic Energy, 2013, 47(4), 262. 62 Rabha S, Chikkala A K, Dobbidi P. Ferroelectrics, 2017, 519(1), 145. 63 Zhao L, Shen C Y, Qiu T. Journal of Inorganic Materials, 2011, 26(2), 219. 64 Zhao L, Hu Y Y, Li D, et al. Piezoelectrics and Acoustooptics, 2017, 39(5), 707 (in Chinese). 赵莉,胡玉叶,李丹,等. 压电与声光, 2017, 39(5), 707. 65 Zhao L, Hu Y Y, Li D, et al. Journal of Synthetic Crystals, 2017, 46(3), 526 (in Chinese). 赵莉,胡玉叶,李丹,等. 人工晶体学报, 2017, 46(3), 526. 66 Khamman O, Jainumpone J, Watcharapasorn A, et al. Journal of the Korean Physical Society, 2016, 69(3), 365. 67 Pullar R C. Journal of the American Ceramic Society, 2009, 92(3), 563. 68 Gao F, Liu J J, Hong R Z, et al. Ceramics International, 2009, 35(7), 2687. 69 Bafrooei H B, Nassaj E T, Hu C F, et al. Physica B, Condensed Matter, 2014, 454, 35. 70 Zhang Y C, Li L T, Yue Z X, et al. Materials Science and Engineering, B, 2003, 99(1), 282. 71 Wang J, Yue Z X, Gui Z L, et al. Journal of Alloys and Compounds, 2005, 392(1), 263. 72 Yan Z, Huang J L, Gu Y J, et al. Electronic Components and Materials 2013, 32(3), 26 (in Chinese). 晏忠,黄金亮,顾永军,等. 电子元件与材料, 2013, 32(3), 26. 73 Bafrooei H B, Nassaj E T, Ebadzadeh T, et al. Journal of Materials Science, Materials in Electronics, 2014, 25(4), 1770. 74 Du Y, Huang J L, Gu Y J, et al. Journal of Functional Materials and Devices, 2015, 21(4), 56 (in Chinese). 杜勇,黄金亮,顾永军,等. 功能材料与器件学报, 2015, 21(4), 56. 75 Asadian K, Shahgholi N, Ghafari S, et al. Journal of Electronic Mate-rials, 2018, 47(12), 7151. 76 Shahgholi N, Asadian K, Ebadzadeh T. Ceramics International, 2014, 40(9), 14335. 77 Abdul Khalam L, Sebastian M T. Journal of the American Ceramic Society, 2007, 90(5), 1467. 78 Li J M, Qiu T. Journal of Nanjing University of Technology (Natural Science Edition), 2012, 34(2), 6 (in Chinese). 李家茂,丘泰. 南京工业大学学报(自然科学版), 2012, 34(2), 6. 79 Guo R Y, Bhalla A S, Cross L E. Journal of Applied Physics, 1994, 75(9), 4704. 80 Lu C H, Tsai C C. Journal of Materials Research, 1996, 11(5), 1219. 81 Ravichandran D, Meyer R, Roy R, et al. Materials Research Bulletin, 1996, 31(7), 817. 82 Yoon K H, Kim D P, Kim E S. Journal of the American Ceramic Society, 1994, 77(4), 1062. 83 Kim B J, Kim M H, Nahm S, et al. Journal of the European Ceramic So-ciety, 2007, 27(2), 1065. 84 Jiang S Z, Yue Z X, Shi F. Journal of Alloys and Compounds, 2015, 646, 49. 85 Vaidhyanathan B, Agrawal D K, Shrout T R, et al. Materials Letters, 2000, 42(3), 207. 86 Desu S B, O'Bryan H M. Journal of the American Ceramic Society, 1985, 68(10), 546. 87 Liu S J, Merrick V A, Newman N. Journal of the European Ceramic So-ciety, 2006, 26(15), 3273. 88 Varma M R, Biju S, Sebastian M T. Journal of the European Ceramic Society, 2006, 26(10), 1903. 89 Sindam B, Raju K C J. Materials Today, Proceedings, 2016, 3(6), 2107. 90 Sindam B, Raju K C J. The European Physical Journal B, 2016, 89(4), 1. 91 Tamura H, Konoike T, Sakabe Y, et al. Communications of the American Ceramic Society, 1984, 67(4), c59. 92 Lu C H, Tsai C C. Materials Science and Engineering, 1998, 55(1), 95. 93 Sindam B, Sharma P K, Raju K C J. Materials Research Express, 2014, 1(1), 15701. 94 Kim M H, Nahm S, Lee W S, et al. Japanese Journal of Applied Physics, 2005, 44(5A), 3091. 95 Yang J I, Nahm S, Choi C H, et al. Journal of the American Ceramic Society, 2002, 85(1), 165. 96 Sindam B, Pundareekam G J, James R K C. Materials Today, Procee-dings, 2016, 3(6), 2101. 97 Pullar R C, Penn S J, Wang X, et al. Journal of the European Ceramic Society, 2009, 29(3), 419. 98 Penn S J, Alford N M, Templeton A, et al. Journal of the American Ceramic Society, 2005, 80(7), 1885. 99 Ichinose N, Shimada T. Journal of the European Ceramic Society, 2006, 26(10), 1755. 100 Fu M S, Liu X Q, Chen X M. Journal of the European Ceramic Society, 2008, 28(3), 585. 101 Naghib Z H, Glitzky C, Oesterle W, et al. Journal of the European Ceramic Society, 2011, 31(4), 589. 102 Ianculescu A C, Vasilescu C A, Crisan D, et al. Materials Characterization, 2015, 106, 195. 103 Pithan C, Hennings D, Waser R. International Journal of Applied Cera-mic Technology, 2005, 2(1), 1. 104 Sharmaa P, Kumarb P, Kundua R S, et al. Ceramics International, 2015, 41(10), 13425. 105 Kishi H, Mizuno Y, Chazono H. Japanese Journal of Applied Physics, 2003, 42(1), 1. 106 Chandrasekhar M, Kumar P. Ceramics International, 2016, 42(9), 10587. 107 Pang L X, Wang H, Zhou D, et al. Journal of Materials Science, Mate-rials in Electronics, 2010, 21(12), 1285. 108 Yan M F, Rhodes W W. Applied Physics Letters, 1982, 40(6), 536. 109 Chao S, Dogan F. International Journal of Applied Ceramic Technology, 2011, 8(6), 1363. 110 Wersing W. Current Opinion in Solid State and Materials Science, 1996, 1(5), 715. 111 Templeton A, Wang X R, Penn S J, et al. Journal of the American Ceramic Society, 2000, 83(1), 95. 112 Waser R, Baiatu T, Härdtl K H. Materials Science and Engineering, 1989, 109, 171. 113 Jung S, Kim J H. Korean Journal of Chemical Engineering, 2010, 27(2), 645. 114 Eastman J A, Sickafus K E, Katz J D, et al. Mrs Online Proceedings Library Archive, 1990, 189, 273. 115 Xie Z P, Fan X D, Huang Y. Journal of Materials Research, 1998, 13(12), 3417. 116 Marinel S, Choi D H, Heuguet R, et al. Ceramics International, 2013, 39(1), 299. 117 Chen X M, Li Y. Journal of the American Ceramic Society, 2002, 85(3), 579. 118 Okudera H, Nakamura H, Toraya H, et al. Journal of Solid State Che-mistry, 1999, 142, 336. 119 Xu Y B, He Y Y. Ceramics International, 2002, 28(1), 75. 120 Tan Y, Shen C Y, Qiu T. Piezoelectrics and Acoustooptics, 2010, 32(2), 301 (in Chinese). 谭颖,沈春英,丘泰. 压电与声光, 2010, 32(2), 301. 121 Huang C L, Tsai J T, Materials Research Bulletin, 2001, 36(3), 547. 122 Li J M, Qiu T. International Journal of Minerals, Metallurgy and Mate-rials, 2012, 19(3), 245. |
|
|
|