INORGANIC MATERIALS AND CERAMIC MATRIX COMPOSITES |
|
|
|
|
|
A Review on Evaluation Methods of Asphalt-Aggregate Adhesion |
WANG Weina1,2, XU Qingjie2, ZHOU Shengxiong2, QIN Yu3, YAN Qiang4
|
1 National and Local Joint Engineering Laboratory of Traffic Civil Engineering Materials, Chongqing Jiaotong University, Chongqing 400074 2 School of Civil Engineering, Chongqing Jiaotong University, Chongqing 400074 3 CREEC (Chongqing) Survey, Design and Research Co. Ltd., Chongqing 400023 4 Guangxi Trading Technology Co. Ltd., Nanning 530021 |
|
|
Abstract The adhesion between asphalt and aggregate is an important factor for asphalt mixture structure, and it is directly related to the main properties such as structural strength, water stability of asphalt mixture, and also has a great impact on the service life of asphalt pavement. Therefore, it is necessary to analyze the adhesion between asphalt and aggregate. Typical adhesion evaluation methods can be classified into the following three categories: (i)smearing the asphalt layer on the surface of stone substrate (or other materials), applying vertical tensile or shear stress to the interface between the asphalt layer and the substrate, and indirectly characterizes the adhesion between asphalt and aggregates by the magnitude of force (or shear strength) when asphalt is peeled off from the substrate surface; (ii) the asphalt-coated aggregate is placed in water, and the action of water causes the asphalt to peel off from the aggregate surface. The adhesion between asphalt and aggregate is evaluated by the degree of asphalt peeling from the aggregate surface; (iii) based on the surface energy theory, the surface energy parameters of asphalt and aggregate are tested, and the asphalt-aggregate adhesion is evaluated by the energy parameters. Standard Test Methods of Bitumen and Bituminous Mixtures for Highway Engineering (JTG E20-2011) in China specifies the use of boiling and water immersion methods to evaluate asphalt-aggregate adhesion properties. Although the test method is simple and fast, the results are influenced by human judgment and lack of quantitative evaluation indicators. With the development of science and technology, researchers have gradually applied various new technolofgies to the asphalt-aggregate adhesion performance test, such as ultrasonic simulation of hydrodynamic pressure to improve the traditional boiling method, the application of high-quality graphics processing system to quantify the degree of asphalt peeling. And based on atomic force microscope (AFM), the micro-nano scale asphalt-aggregate adhesion evaluation is carried out with different test modes. Neural network model is used to quantify the adhesion properties. With the continuous maturity of AFM, the application of this technology to evaluate asphalt-aggregate adhesion has become a research hotspot in recent years. At the same time, under the efforts of researchers, the newly developed test using AFM has made breakthroughs in measu-ring the surface energy and adhesion of asphalt and aggregates. Also some new research ideas have begun to appear. In order to investigate the changes in the adhesion properties of asphalt and aggregate under different loads, the researchers used dynamic mechanics analyzer (DMA) for tensile tests of “sandwich” cylinder specimens to analyze the relationship between asphalt and aggregate tensile bond fatigue and loading stress. Therefore, adhesion is associated with fatigue organically, and the asphalt mastic (aggregate + mineral powder) is taken as the research object, and the adhesion fatigue test is carried out. The adhesion between asphalt and fine aggregate is characterized by the adhesion fatigue failure of asphalt mastic. This paper reviewed the development history of asphalt and aggregate adhesion at home and abroad, comprehensively described the evaluation methods and studied the status of asphalt-aggregate adhesion. Four asphalt-aggregate adhesion evaluation systems were classified. The advantages and disadvantages of the evaluation methods in the evaluation system were compared. The shortcomings of asphalt adhesion evaluation system were presented, and the future development trends and research hotspots in this field were proposed. It provided the reference for the further improvement and application of asphalt-aggregate adhesion performance test method.
|
Published: 14 June 2019
|
|
Fund:This work was financially supported by the National Natural Science Foundation of China (51508064,51408083), Chongqing Frontier and Application Basic Research Project (cstc2016jcyjA0128), Guangxi Transportation Science and Technology Plan Project (2013-100-28), Open Foundation Project of National Local Joint Engineering Laboratory for Transportation and Civil Engineering Materials (LHSYS-2016-01). |
|
|
1 |
Li L H, Zhang N L, Sun D Q. Road engineering materials, China Communications Press, China,2010 (in Chinese).李立寒, 张南鹭, 孙大权. 道路工程材料, 人民交通出版社, 2010.2 Sha Q L. Premature damage and its preservative measures of bituminous pavement on expressway, China Communications Press, China,2001 (in Chinese).沙庆林. 高速公路沥青路面早期破坏现象及预防, 人民交通出版社, 2001.3 Sun L J. Structure behavior study for asphalt pavement, China Communications Press,China, 2005 (in Chinese).孙立军. 沥青路面结构行为理论, 人民交通出版社, 2005.4 Wang L N. The research for influncing mechanism of interface bonding property between asphalt and aggregate. Master's Thesis, Hefei University of Technology, (China,) 2016 (in Chinese).王利娜. 沥青-集料界面粘结性能影响机制研究.硕士学位论文, 合肥工业大学, 2016.5 Xiao Y. Fracture mechanisms of binder-aggregate system and its effect on properties of asphalt mixtures. Master's Thesis, Wuhan University of Technology, China, 2008 (in Chinese).肖月. 沥青混合料中胶浆-集料粘结性及力学性能研究. 硕士学位论文, 武汉理工大学, 2008.6 Zhou W F. Study on adhesion of interface between asphalt and aggregate. Master's Thesis, Chang'an University, China, 2002 (in Chinese).周卫峰. 沥青与集料界面粘附性研究. 硕士学位论文, 长安大学, 2002.7 Yan X L, Liang C Y. China Journal of Highway and Transport, 2001,14(4),26 (in Chinese).延西利, 梁春雨. 中国公路学报, 2001,14(4),26.8 Chen Z F, Chen Z D, Chang Y T, et al. Journal of Jiangsu University (Natural Science Edition), 2017,38(1),98 (in Chinese).陈峙峰, 陈忠达, 常艳婷, 等. 江苏大学学报(自然科学版), 2017,38(1),98.9 Pang X Y. Asphalt and aggregate adhesion characteristics analysis based on the principle of AFM and the surface energy. Master's Thesis, Harbin Institute of Technology, China, 2015 (in Chinese).庞骁奕. 基于AFM与表面能原理的沥青与集料粘附特性分析. 硕士学位论文, 哈尔滨工业大学, 2015.10 Yi J Y, Pang X Y, Yao D D, et al. Acta Materiae Compositae Sinica, 2017,34(5),1111 (in Chinese).易军艳, 庞骁奕, 姚冬冬, 等. 复合材料学报, 2017,34(5),1111.11 Yi J, Pang X, Feng D, et al. Road Materials & Pavement Design, 2018,19(5),1102.12 Tarefder R A, Ahsan S. Journal of Microscopy, 2014,254(1),31.13 Mo L T. Damage development in the adhesive zone and mortar of porous asphalt concrete. Ph.D. Thesis, Delft University of Technology, Netherlands, 2010.14 Mo L T, Huurman M, Wu S P, et al. Materials & Design, 2009,30(1),170.15 Wang D, Yi J, Feng D. The Scientific World Journal, 2014,2014,1.16 Huurman M, Mo L T. Fatigue in mortar and adhesive zones; measurements, test interpretation and determination of model parameters. Laboratory of Road and Railway Engineering, Delft University of Technology, Netherlands, 2007. 17 Wei J, Zhang Y. Journal of Testing and Evaluation, 2012,40(5),1.18 Nguyen T, Byrd W E, Bentz D P, et al. Development of a method for measuring water-stripping resistance of asphalt/sillieous aggregate mixtures. Transport Research Board, Washington D.C.,1996. 19 Wang L. Investigation of the interface structure and adhesion mechanism between asphalt and aggregate. Master's Thesis, Chang'an University, China, 2014 (in Chinese).王璐. 沥青-集料界面相结构和粘附机理研究. 硕士学位论文, 长安大学, 2014.20 Guo M, Tan Y, Zhou S. Construction & Building Materials, 2014,68(4),769.21 Song Y R, Zhang Y Z. Petroleum Asphalt, 2005, 19(3),1 (in Chinese).宋艳茹, 张玉贞. 石油沥青, 2005, 19(3),1.22 Babcock G B, Statz R J, Larson D S. Proceedings of the Canadian Technical Asphalt Association, 1998,43,1.23 Lacombe R. Adhesion measurement methods: Theory and practice, CRC Press Taylor & Francis Group, USA,2006.24 Wang Y. The bonding characteristic research of aggregate-asphalt mortar interface. Master's Thesis, Harbin Institute of Technology, China, 2015 (in Chinese). 王元. 集料-沥青胶浆界面粘结特性研究. 硕士学位论文, 哈尔滨工业大学, 2015.25 Xu M Y, Li X L, Zhang L Q. Journal of China & Foreign Highway, 2011,31(6),225 (in Chinese).徐鸣遥, 李晓林, 张立群. 中外公路, 2011,31(6),225.26 Wang J, Chen Y J. Shanxi Architecture, 2012,38(5),126 (in Chinese).王军, 陈燕娟. 山西建筑, 2012,38(5),126.27 Research Institute of Highway, Ministry of Transport. Standard test met-hods of bitumen and bituminous mixtures for highway engineering (JTG E20-2011), China Communications Press, China,2011 (in Chinese).交通运输部公路科学研究院. 公路工程沥青及沥青混合料试验规程(JTG E20-2011), 人民交通出版社, 2011.28 Yan J J. Journal of Tongji University, 1978(4),69 (in Chinese).严家伋. 同济大学学报, 1978(4),69.29 Xu K W. Highway, 1998(8),42 (in Chinese). 徐克威. 公路, 1998(8),42.30 Chen B H. Based on the photoelectric colormetric method of asphalt and mineral aggregate adhesion effect. Master's Thesis, Chang'an University, China, 2014 (in Chinese).陈斌华. 基于光电比色法的沥青与矿料粘附效应研究. 硕士学位论文, 长安大学, 2014.31 Ma F, Fu Z P, Fu Z, et al. Journal of Zhengzhou University (Enginee-ring Science), 2015,36(3),77 (in Chinese).马峰, 富志鹏, 傅珍, 等. 郑州大学学报(工学版), 2015,36(3),77.32 Cheng R. Highway, 2016,61(4),212 (in Chinese).程锐. 公路, 2016,61(4),212.33 Geng J G. Study on the aging mechanism and recycling technique of asphalt. Ph.D. Thesis, Chang'an University, China, 2009 (in Chinese).耿九光. 沥青老化机理及再生技术研究. 博士学位论文, 长安大学, 2009.34 Yuan J A, Xu X J. Highway, 1999(11),53 (in Chinese).原健安, 徐希娟. 公路, 1999(11),53.35 Hao P W, Li Y, Liu J Q. Journal of Wuhan University of Technology, 2003,25(3),13 (in Chinese).郝培文, 李瑜, 刘建强. 武汉理工大学学报, 2003,25(3),13.36 Peng Y H, Wang L Z, Yu L. Journal of Shenyang Jianzhu University (Natural Science), 2009,25(2),282 (in Chinese).彭余华, 王林中, 于玲. 沈阳建筑大学学报(自然科学版), 2009,25(2),282.37 Zhou W F. Journal of Highway and Transportation Research and Development, 2004,21(5),18 (in Chinese).周卫峰. 公路交通科技, 2004,21(5),18.38 Fan L, Zhang Y Z, Wang L. Highway, 2011(12),151 (in Chinese).樊亮, 张玉贞, 王林. 公路, 2011(12),151.39 Zhang K, Zhang Z Q. Journal of Hefei University of Technology (Natural Science), 2015,38(6),810 (in Chinese).张苛, 张争奇.合肥工业大学学报(自然科学版), 2015,38(6),810.40 Zhang Q, Hao P W, Bai Z Y. Journal of Highway and Transportation Research and Development, 2015,32(9),9 (in Chinese).张庆, 郝培文, 白正宇. 公路交通科技, 2015,32(9),9.41 Yuan J, Dong W J, Qian W B, et al. Science Technology and Enginee-ring, 2013,13(5),1388 (in Chinese).袁峻, 董文姣, 钱武彬, 等. 科学技术与工程, 2013,13(5),1388.42 Dong W J. Resaerch on the effect of aggregate morphology on affnity between bitumen and aggregate. Master's Thesis, Yangzhou University, China, 2013 (in Chinese).董文姣. 集料形貌对沥青-集料黏附性影响研究. 硕士学位论文, 扬州大学, 2013.43 Liu Y M, Han S, Li B. Journal of Building Materials, 2010,13(6),769 (in Chinese).刘亚敏, 韩森, 李波.建筑材料学报, 2010,13(6),769.44 Zollinger C J. Application of surface energy measurementes to evaluate moisture susceptibility of asphalt and aggregates. Master's Thesis, Texas A & M University, USA, 2005.45 Copeland R A. Influence of moisture on bond strength of asphalt-aggregate systems. Ph.D. Thesis, Vanderbilt University, USA, 2007.46 Bhasin A, Little D. Journal of Material in Civil Engineering, 2007, 19(8), 634.47 Arabani M, Hamedi G H. Journal of Mate-rials in Civil Engineering, 2011,23(6),802.48 Howson J, Masad E, Bhasin A, et al. Construction and Building Mate-rials, 2011,25(5),2554.49 Tan Y, Guo M. Construction & Building Materials, 2013,47(5),254.50 Hamedi G H, Moghadas Nejad F. Road Materials and Pavement Design, 2014,16(2),239.51 Diab A, You Z, Hossain Z, et al. Transportation Research Record: Journal of the Transportation Research Board, 2014,3(2446),52.52 Hossain Z, Bairgi B, Belshe M. Construction and Building Materials, 2015,95,45.53 Ghabchi R, Singh D, Zaman M. Construction and Building Materials, 2014,73,479.54 Shafabakhsh G H, Faramarzi M, Sadeghnejad M. Construction and Buil-ding Materials, 2015,98,456.55 Zhang Y. Study on adhesion of interface between asphalt and aggregate. Master's Thesis, Chang'an University, China, 2014 (in Chinese).张越. 沥青与集料界面粘附性研究. 硕士学位论文, 长安大学, 2014.56 Sun Y, Li L H. Journal of Building Materials, 2016, 19(2),285 (in Chinese).孙瑜, 李立寒. 建筑材料学报, 2016, 19(2),285.57 Luo R, Zheng S S, Zhang D R, et al. China Journal of Highway and Transport, 2017,30(6),209 (in Chinese).罗蓉, 郑松松, 张德润, 等. 中国公路学报, 2017,30(6),209.58 Nejad F M, Hamedi G H, Azarhoosh A R. Journal of Materials in Civil Engineering, 2013,25(8),1119.59 Liao Y C, Shi C H, Huo D. Highway, 2013(5),94 (in Chinese).廖玉春, 史朝辉, 霍典. 公路, 2013(5),94.60 Khan A, Redelius P, Kringos N. Construction and Building Materials, 2016,125(Sup C),1005.61 Li B, Zhang Z H, Liu X, et al. Materials Review B:Research Papers, 2017,31(2),115 (in Chinese).李波, 张智豪, 刘祥, 等. 材料导报:研究篇, 2017,31(2),115.62 Gan X L, Zheng N X, Cong Z H. Journal of Beijing University of Techno-logy, 2017,43(9),1388 (in Chinese).甘新立, 郑南翔, 丛卓红. 北京工业大学学报, 2017,43(9),1388.63 Das P K, Baaj H, Tighe S, et al. Road Materials and Pavement Design, 2016,17(3),693.64 Fischer H R, Dillingh E C, Hermse C G M. Applied Surface Science, 2013,265(2),495.65 Lyne A L, Redelius P, Collin M, et al. Materials and Structures/Mate-riaux et Constructions, 2013,46(1-2),47.66 Abd D M, Al-Khalid H, Akhtar R. Road Materials and Pavement Design, 2017,18(Sup2),189.67 Li B. Research on the adhesion characteristics of warm mix asphalt based on atomic force microscope technique. Master's Thesis, Lanzhou Jiaotong University, China, 2015 (in Chinese).李波. 基于原子力显微镜技术的温拌沥青老化过程中粘附特性研究. 硕士学位论文,兰州交通大学, 2015.68 Yu X, Burnham N A, Mallick R B, et al. Fuel, 2013,113(9),443.69 Lyne L, Wallqvist V, Birgisson B. Fuel, 2013,113(2),248.70 Fischer H R, Dillingh E C, Hermse C G M. Road Materials & Pavement Design, 2014,15(1),1.71 Das P K, Baaj H, Kringos N, et al. Road Materials & Pavement Design, 2015,16(Sup1),265.72 Tarefder R A, Zaman A M. Journal of Materials in Civil Engineering, 2010,22(7),714.73 Li Y, Yang J, Tan T. Construction and Building Materials, 2015,101(1),159.74 Xu M, Yi J, Feng D, et al. ACS Applied Materials & Interfaces, 2016,8(19),12393.75 Lopez-Contreras Y F, Chaves-Guerrero A, Akbulut M, et al. CT & F-Ciencia Tecnologia Y Futuro, 2017,7(1),59.76 Tarefder R A, Ahsan S, Arifuzzaman M. Journal of Materials in Civil Engineering, 2017,29(4),1.77 Medendorp C A. Atomic force microscopy method development for surface energy analysis. Ph. D. Thesis, University of Kentucky, USA, 2011.78 Huang P, Guo D, Wen S Z. Interface Mechanics, Tsinghua University Press, China,2013 (in Chinese)黄平, 郭丹, 温诗铸. 界面力学, 清华大学出版社, 2013.79 Wu J T. Studies on interaction capability of asphalt and aggregate based on rheological characteristics. Master's Thesis, Harbin Institute of Technology, China, 2009 (in Chinese).吴建涛. 基于流变特性的沥青与集料交互作用能力的研究. 硕士学位论文, 哈尔滨工业大学, 2009.80 Liu F, Li Y Z, Huang Y Y. Journal of China & Foreign Highway, 2005,25(4),192 (in Chinese).刘峰, 李宇峙, 黄云涌. 中外公路, 2005,25(4),192.81 Wu S, Cong P, Yu J, et al. Fuel, 2006, 85(9),1298.82 Mo L T, Wu S P, Huurman M, et al. Theoretical & Applied Fracture Mechanics, 2006,46(2),140.83 Cho D W, Bahia H U. Transportation Research Record: Journal of the Transportation Research Board, 2007,1998(1),10.84 Kanitpong K, Bahia H U. Journal of the Association of Asphalt Paving Technologists, 2003,72,502.
|
|
|
|