Please wait a minute...
材料导报  2024, Vol. 38 Issue (7): 22120127-6    https://doi.org/10.11896/cldb.22120127
  无机非金属及其复合材料 |
激光辐射波长和脉冲寿命对碲化镉熔化阈值的影响
列维茨基·谢尔盖1,*, 曹泽祥2, 柯巴·亚历山大3, 柯巴·玛丽亚3
1 乌克兰国家科学院半导体物理研究所,基辅 03028
2 乌克兰国立技术大学物理技术学院,基辅 03058
3 乌克兰国民警卫研究所国家安全系,基辅 03028
Dependence of the Melting Threshold of CdTe on the Wavelength and Pulse Lifetime of Laser Radiation
LEVYTSKYI Serhii1,*, CAO Zexiang2, KOBA Alexander3, KOBA Maria3
1 V. E. Lashkaryov Institute of Semiconductor Physics NAS of Ukraine, Kyiv 03028, Ukraine
2 Institute of Physics and Technology, National Technical University of Ukraine, Kyiv 03058, Ukraine
3 Faculty of State Security, Kyiv Institute of the National Guard of Ukraine, Kyiv 03028, Ukraine
下载:  全 文 ( PDF ) ( 2696KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 碲化镉的相对分子量为240,密度为5.885 g/cm3,熔点为1 092 ℃。碲化镉是一种Ⅱ-Ⅵ族的化合物半导体材料,属于直接带隙型,带隙宽度为1.56 eV。碲化镉是制造X射线、伽马射线和红外线探测器的基本材料。对碲化镉的特别关注主要是由于其大原子数和大的光电吸收截面。在基于CdTe的伽马辐射势垒探测器结构中,其表面的处理方法之一是纳秒激光照射,在某些情况下,纳秒激光照射可以在触点(Ag、In、Au)和势垒形成的技术处理阶段优化所需的表面参数。另一种方法是在脉冲激光照射下在碲化镉表面形成有序的纳米结构。
对基于半导体及其结构的脉冲激光器,可根据其不同的脉冲持续时间τp和辐射波长λ将其分类。例如,红宝石激光器(λ=694 nm)、钕激光器(一次谐波1 064 nm和两次谐波532 nm)、准分子KrF激光器(248 nm)和XeF激光器(351 nm)等,其脉冲持续时间分别为7、20、80、120 ns。这些激光器常被应用于表面修饰等领域。因此,往往有必要事先知道或至少估计在脉冲激光辐射下碲化镉表面的熔化温度和阈值,这取决于激光脉冲持续时间τp、辐射波长(光吸收系数α(λ))以及碲化镉表面本身的电物理参数,特别是表面重组率S和非平衡电荷载流子的寿命。这些参数取决于表面处理的方法和掺杂物的浓度。在上述情况下,实验研究是非常耗费人力和时间的,因此基于τp、α(λ)和碲化镉表面本身的电物理参数对融化阈值th和表面温度进行理论计算变得非常重要。
本工作采用激光照射碲化镉,辐射波长为300~800 nm,脉冲持续时间为7~120 ns。为了以非破坏性的和有效的方法来管理接近表面层状态的CdTe,在T=80 K下进行了光致发光实验。为了监测熔化阈值,研究了由Acrorad公司制造和抛光的尺寸为5 mm×5 mm×0.5 mm的Cl补偿p-CdTe(111)单晶的光致发光光谱。
经过研究发现,在激光脉冲寿命从7 ns到1 μs的范围内,CdTe熔化阈值明显取决于光吸收系数α(λ)。因为在脉冲寿命长于1 μs的情况下,热扩散深度明显大于CdTe中的激光辐射穿透深度,并开始依赖于反射系数R(λ)。对于较短的激光脉冲长度τp,当辐射波长λ变化时,熔化阈值会发生显著变化。同时,非平衡过剩载流子参数的变化(如表面重组速度S从103 m/s增加到105 m/s,还有扩散深度LD从0.4 μm增加到2 μm)会对CdTe熔化阈值产生至少25%的影响。而且红宝石激光的脉冲持续时间在(20±5) ns区间内的变化导致相对熔化阈值的变化(ΔIth/Ith)为35%。CdTe熔化阈值的计算值可以有效地被用于优化脉冲激光对晶体的表面处理与掺杂。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
列维茨基·谢尔盖
曹泽祥
柯巴·亚历山大
柯巴·玛丽亚
关键词:  碲化镉  熔化阈值  脉冲激光辐照  半导体激光掺杂    
Abstract: CdTe has a reasonably large atomic number of elements, a reasonably large photoelectric absorption cross-section, a suitable band gap, and thus a sufficiently high resistance. These properties are all advantages that make CdTe the primary material for nuclear detectors, and the detector can be operated at room temperature (without cooling). The melting threshold Ith of CdTe is affected by the wavelength λ of the laser light, which ranges from 300 nm to 800 nm, and the pulse lifetime τp, which ranges from 7 ns to 120 ns. During melting, the energy released by excess carriers is divided into three parts: (i) after excitation, (ii)during non-radiative scattering, and (iii)during non-radiative surface recombination, which together determine the depth of thermal penetration in the crystal and thus the melting threshold of CdTe in the surface region. The CdTe melting threshold is known to depend on the absorption coefficient α(λ) over a laser pulse lifetime range of 7 ns to 1 μs. At pulse lifetime greater than 1 μs, it depends on the reflection coefficient of the spectrum R(λ). Variations in the non-equilibrium excess carrier parameters found in this paper (lifetime, diffusion depth, and surface recombination rate) can affect the CdTe melting threshold by at least 25%. Since a large amount of work in this area of research has focused on the design of CdTe-based instruments that can be used for the detection and measurement of X-rays/gamma rays as well as for imaging. In this work, therefore, provides guidances for the development of CdTe-based semiconductor laser doping processes and the production of their diode structures.
Key words:  cadmium telluride    melting threshold    pulsed laser irradiation    semiconductor laser doping
出版日期:  2024-04-10      发布日期:  2024-04-11
ZTFLH:  O795  
引用本文:    
列维茨基·谢尔盖, 曹泽祥, 柯巴·亚历山大, 柯巴·玛丽亚. 激光辐射波长和脉冲寿命对碲化镉熔化阈值的影响[J]. 材料导报, 2024, 38(7): 22120127-6.
LEVYTSKYI Serhii, CAO Zexiang, KOBA Alexander, KOBA Maria. Dependence of the Melting Threshold of CdTe on the Wavelength and Pulse Lifetime of Laser Radiation. Materials Reports, 2024, 38(7): 22120127-6.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.22120127  或          https://www.mater-rep.com/CN/Y2024/V38/I7/22120127
1 Sordo S D, Abbene L, Caroli E, et al.Sensors, 2009, 9, 3491.
2 Gnatyuk V A, Aoki T, Hatanaka Y, et al.Applied Surface Science, 2005, 244, 528.
3 Gnatyuk V A, Aoki T, Nakanishi Y, et al.Surface Science, 2003, 542, 142.
4 Gnatyuk V A, Aoki T, Gorodnychenko O S, et al.Applied Physics Letters, 2003, 83(18), 3704.
5 Gnatyuk V A, Aoki T, Vlasenko O I, et al.In:2011 IEEE Nuclear Science Symposium Conference Record, Proceedings.Valencia, 2011, pp.4506.
6 Gnatyuk V A, Levytskyi S N, Vlasenko O I, et al.Advanced Materials Research, 2011, 222, 32.
7 Gnatyuk V А, Aoki T, Vlasenko O I, et al.Proceedings of SPIE, DOI:10.1117/12.799233.
8 Kosyachenko L A, Aoki T, Lambropoulos C P, et al.Journal of Applied Physics, 2013, 113, 054504.
9 Vlasenko A I, Baidullaeva A, Veleschuk V P, et al.Semiconductors, 2015, 49(2), 229.
10 Makhnii V P, German I I, Chernykh E I, et al.Issled, 2013, 6, 65.
11 Golovan’ L A, Kashkarov P K, Sosnovskikh Y N, et al.Physics of Solid State, 1998, 40(2), 187.
12 Golovan’ L A, Kashkarov P K, Timoshenko V Yu.Laser Physics, 1996, 6(5), 925.
13 Veleshchuk V P, Baidullaeva A, Vlasenko A I, et al.Physics of the Solid State, 2010, 52(3), 469.
14 Shul’pina I L, Zelenina N K, Matveev O A.Solid State, 2000, 42(3), 561.
15 Zhvavyi S P, Zykov G L.Semiconductors, 2006, 40(6), 632.
16 Meyer J R, Kruer M R, Bartoli F J.Journal of Applied Physics, 1980, 51(10), 5513
17 Kovalev A A, Zhvavyi S P, Zykov G L.Semiconductors, 2005, 39(11), 1299.
18 Voitenko K V, Veleschuk V P, Isaiev M V, et al.AIP Advances, 2016, 6, 105306.
19 Veleshchuk V P, Vlasenko O I, Vlasenko Z K, et al.Ukrainian Journal of Physics, 2017, 62(2), 159.
20 Gentsar P O, Levytskyi S M.Physics and Chemistry of Solid State, 2019, 20 (4), 384.
No related articles found!
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed