Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (12): 56-59    https://doi.org/10.11896/j.issn.1005-023X.2017.012.012
  材料研究 |
焊接二次热循环对T23钢粗晶区再热裂纹敏感性的影响*
王田田1, 徐孟嘉2, 徐济进1, 余春1, 陆皓1
1 上海交通大学材料科学与工程学院, 上海 200240;
2 上海电机学院机械学院, 上海 201306
Influence of Second Welding Thermal Cycle on Reheat Cracking Sensitivity of CGHAZ in T23 Steel
WANG Tiantian1, XU Mengjia2, XU Jijin1, YU Chun1, LU Hao1
1 School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240;
2 School of Mechanical Engineering, Shanghai Dianji University, Shanghai 201306
下载:  全 文 ( PDF ) ( 3391KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 利用Gleeble-3500热力模拟试验机制备T23钢焊接接头中粗晶热影响区和不同二次热循环的再热粗晶热影响区,并进行STF(Strain-to-fracture)试验。结果表明,粗晶区经历1 350 ℃或780 ℃二次热循环后,仍保持粗晶热影响区的粗大晶粒、笔直的晶界形貌以及高再热裂纹敏感性,断面收缩率低于5%。粗晶区经历了880 ℃、950 ℃或1 100 ℃二次热循环后,晶粒尺寸变小,晶界变曲折,断面收缩率分别为24.67%、16.6%和7.24%,再热裂纹敏感性降低。因此,合理调控二次热循环的峰值温度在Ac1~Ac3之间可以有效降低再热裂纹敏感性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王田田
徐孟嘉
徐济进
余春
陆皓
关键词:  T23钢  粗晶区  焊接二次热循环  再热裂纹    
Abstract: The coarse-grained heat-affected zone (CGHAZ) and reheat coarse-grained heat-affected zone (reheat CGHAZ) experienced different second thermal cycle of T23 steel were produced by a Gleeble-3500 thermo-mechanical simulator, and then strain to fracture (STF) tests were carried out. Results showed that CGHAZ experienced thermal cycle of 1 350 ℃ or 780 ℃ still had coarse grain, straight grain boundary configuration and high reheat cracking sensitivity, with a reduction of area of lower than 5%. CGHAZ experienced thermal cycle of 880 ℃, 950 ℃ or 1 100 ℃ had smaller grain size, zigzag grain boundary and low reheat crac-king sensitivity, and the reductions of area were 24.67%, 16.6% and 7.24% respectively. Controlling the peak temperature of the second welding thermal cycle to the range of Ac1-Ac3 can reduce reheat cracking sensitivity.
Key words:  T23 steel    CGHAZ    second welding thermal cycle    reheat cracking
出版日期:  2017-06-25      发布日期:  2018-05-08
ZTFLH:  TG407  
基金资助: *国家自然科学基金(51575347)
通讯作者:  陆皓:通讯作者, 男,1965年生,博士,教授,主要从事焊接过程数值模拟、焊接力学与结构设计、焊接变形预测与控制等方面的研究 E-mail:luhao@sjtu.edu.cn   
作者简介:  王田田:女,1992年生,硕士研究生,主要从事金属材料组织表征和失效分析方面的研究 E-mail:wttnju@163.com
引用本文:    
王田田, 徐孟嘉, 徐济进, 余春, 陆皓. 焊接二次热循环对T23钢粗晶区再热裂纹敏感性的影响*[J]. 《材料导报》期刊社, 2017, 31(12): 56-59.
WANG Tiantian, XU Mengjia, XU Jijin, YU Chun, LU Hao. Influence of Second Welding Thermal Cycle on Reheat Cracking Sensitivity of CGHAZ in T23 Steel. Materials Reports, 2017, 31(12): 56-59.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.012.012  或          https://www.mater-rep.com/CN/Y2017/V31/I12/56
1 Komai N, Masuyama F, Igarashi M. 10-year experience with T23 (2.25 Cr-1.6 W) and T122 (12Cr-0.4 Mo-2W) in a power boiler [J]. J Pressure Vessel Technol,2005,127(2):190.
2 Wang X, Li X Q, Yang C. Early failure analysis on T23 steel water wall of ultra-supercritical tower furnace [J]. Electric Power,2014,47(12):21(in Chinese).
王学, 李夕强, 杨超. 超超临界塔式炉 T23 水冷壁早期失效分析[J]. 中国电力,2014,47(12):21.
3 Zhao H C, Lin R H, Jia J M. New Heat-resistant steel T23′s performance characteristics and early failure [J]. Proc CSEE,2011,31(20):107(in Chinese).
赵慧传, 凌荣华, 贾建民. 新型耐热钢 T23 的特性与早期失效分析[J]. 中国电机工程学报,2011,31(20):107.
4 Li W B,Shen D J,Xie Y. Failure analysis on weld joint of T23 heat-resistant steels [J].Power Equipment,2015,29(6):443(in Chinese).
李文波, 沈丁杰, 谢亿. T23 耐热钢焊缝失效分析[J]. 发电设备,2015,29(6):443.
5 Wang J, Lu S, Rong L. Thermal cycling, microstructure and mechanical properties of 9Cr2WVTa steel welds [J]. J Mater Process Technol,2015,222:434.
6 Han Y C, Chen X D, Fan Z C. Influence of second thermal cycle on reheat cracking susceptibility of welding CGHAZ in vanadium-modified 2.25Cr1Mo steel[J]. Procedia Eng,2015,130:487.
7 Xu M, Chen J, Lu H. Effects of residual stress and grain boundary character on creep cracking in 2.25Cr-1.6W steel[J]. Mater Sci Eng A,2016,659:188.
8 Nawrocki J G, Dupont J N, Robino C V. The mechanism of stress-relief cracking in a ferritic alloy steel [J]. Weld J,2003,82(2):25.
9 Vinckier A G, Pense A W. WRC bulletin. A review of underclad cracking in pressure-vessel components [M]. New York:Welding Research Council,1973.
10 Park K, Kim S, Chang J. Post-weld heat treatment cracking susceptibility of T23 weld metals for fossil fuel applications [J]. Mater Des,2012,34:699.
11 Tanaka M. Characterization of grain-boundary configuration and fracture surface roughness by fractal geometry and creep-rupture properties of metallic materials [J]. J Mater Sci,1992,27(17):4717.
12 Tanaka M, Iizuka H, Ashihara F. Effects of serrated grain boundaries on the crack growth in austenitic heat-resisting steels during high-temperature creep [J]. J Mater Sci,1988,23(11):3827.
[1] 杨林, 熊建坤, 余勇, 文仲波, 聂甫恒, 杨东, 王东力, 冯雨来. 大热输入对焊条电弧焊低合金钢力学性能的影响[J]. 材料导报, 2019, 33(Z2): 424-427.
[2] 肖龙仁, 雷玉成, 朱强, 李天庆, 陈钢, 罗梦, 赵军, 陈文彬. 焊丝成分对T91/316L异种钢焊接接头微观组织和力学性能的影响[J]. 材料导报, 2018, 32(20): 3601-3605.
[3] 薛河, 刘吉, 张顺, 张建龙, 孙裕满, 毕跃起. 基于UMAT焊接接头力学性能连续变化的表征方法及应用[J]. 材料导报, 2021, 35(Z1): 362-366.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed