Please wait a minute...
材料导报  2021, Vol. 35 Issue (18): 18205-18209    https://doi.org/10.11896/cldb.20040042
  高分子与聚合物基复合材料 |
热塑性纤维铺放构件的层间剪切强度及孔隙率
曹忠亮1,2, 郭登科2, 林国军2, 韩振宇3, 富宏亚3
1 江苏理工学院机械工程学院,常州 213000
2 齐齐哈尔大学机电工程学院,齐齐哈尔 161001
3 哈尔滨工业大学机电工程学院,哈尔滨 150001
Interlaminar Shear Strength and Porosity of Thermoplastic Fiber Placement Component
CAO Zhongliang1,2, GUO Dengke2, LIN Guojun2, HAN Zhenyu3, FU Hongya3
1 School of Mechanical Engineering, Jiangsu University of Technology, Changzhou 213000, China
2 School of Mechatronics Engineering, Qiqihar University, Qiqihar 161001, China
3 School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001, China
下载:  全 文 ( PDF ) ( 3172KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 热塑性纤维(AS4/PEEK,熔点温度343 ℃)铺放采用的是原位固化工艺技术,铺放成型后热塑性纤维铺放构件层间性能直接影响构件的力学性能。本工作根据均匀试验法原理设计并进行铺放试验,得到构件的剪切强度和孔隙率,分析铺放工艺参数对铺放构件的层间剪切强度和孔隙率的影响规律,采用SEM对构件的断面层间进行观测,同时优化热塑性纤维铺放构件的剪切强度和孔隙率。结果表明:在铺放试件性能检测数据的基础上,随着加热温度和铺放压力的升高和增大,层间剪切强度也增大,而随着铺放速度的加快,层间剪切强度反之降低;孔隙率与铺放速度及加热温度呈正相关,随铺放压力的增大而降低。当铺放速度为6.00 mm/s、加热温度为699.35 ℃、铺放压力为539.94 N时,预测构件层间剪切强度最高为52.15 MPa;当铺放速度为6.00 mm/s、加热温度为630.04 ℃、铺放压力为530.00 N时,预测构件孔隙率最小为1.98%,最后试验测试得到的结果与预测结果基本一致。本工作的研究结果在我国制造业领域中热塑性纤维的应用方面具有一定的实用价值。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
曹忠亮
郭登科
林国军
韩振宇
富宏亚
关键词:  热塑性纤维  层间性能  剪切强度  孔隙率  铺放构件  自动铺放    
Abstract: The in-situ curing technology is applied in the thermoplastic fiber (AS4/PEEK, melting point temperature 343 ℃) placement, so the interlaminar property directly affect the mechanical properties of the thermoplastic composite component after placement. In this paper, accor-ding to the principle of uniform test method, the placement test and interlaminar property test were designed,the data of interlaminar shear strength and porosity were obtained. The cross-sectional laminates were observed by SEM, at the same time, the interlaminar shear strength and porosity of the thermoplastic fiber placement component were optimized. Results showed that, based on the performance test data of the placement test component, it is obtained that as the heating temperature and the placement pressure increase, the interlaminar shear strength increases and as the placement speed increases, the interlaminar shear strength decreases on the contrary; the porosity has a positive correlation with the placement speed and heating temperature, and decreases with the increase of the placement pressure. When the placement speed is 6.00 mm/s, the hot air temperature is 699.35 ℃ and the placement pressure is 539.94 N, the maximum interlaminar shear strength of the component was predicted to be 52.15 MPa; when the placement speed is 6.00 mm/s, the hot air temperature is 630.04 ℃ and the placement pressure is 530.00 N, the minimum porosity of component was predicted to be 1.98%. The final test results are basically consistent with the prediction results, which has a certain practical value for the application level of thermoplastic fiber in the manufacturing field of our country.
Key words:  thermoplastic fiber    interlaminar property    interlaminar shear strength    porosity    placement component    automatic placement
               出版日期:  2021-09-25      发布日期:  2021-09-30
ZTFLH:  TB332  
基金资助: 国家自然科学基金项目(51705266);国家数控专项支持项目(2014ZX04001091);黑龙江省自然科学基金项目(QC2018072)
作者简介:  曹忠亮,江苏理工学院机械工程学院副教授,2010年7月获得哈尔滨工业大学机械电子工程专业硕士学位,2019年7月获得哈尔滨工业大学机械工程专业博士学位。主持国家自然基金青年项目一项、省自然基金项目一项,参与省级以上基金项目两项,主持市厅级项目3项。目前主要研究领域为复合材料铺放成型工艺、变角度轨迹规划、CAD/CAM等,发表期刊论文二十余篇,授权专利6项。
引用本文:    
曹忠亮, 郭登科, 林国军, 韩振宇, 富宏亚. 热塑性纤维铺放构件的层间剪切强度及孔隙率[J]. 材料导报, 2021, 35(18): 18205-18209.
CAO Zhongliang, GUO Dengke, LIN Guojun, HAN Zhenyu, FU Hongya. Interlaminar Shear Strength and Porosity of Thermoplastic Fiber Placement Component. Materials Reports, 2021, 35(18): 18205-18209.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20040042  或          http://www.mater-rep.com/CN/Y2021/V35/I18/18205
1 Du S Y.Acta Materiae Compositae Sinica, 2007, 24(1), 1 (in Chinese).
杜善义. 复合材料学报, 2007, 24(1), 1.
2 Morey B. Manufacturing Engineering, 2008, 8(4), 12.
3 Grant C G. SAMPE Journal, 2000, 36(4), 7.
4 Sun Y B, Li H F, Zhang B M.Aeronautical Science & Technology, 2016, 18(5), 7(in Chinese).
孙银宝, 李宏福, 张博明. 航空科学技术, 2016, 18(5), 7.
5 Ji G M, Yin Y H, Zheng Z. China Adhesives, 2016, 25(3), 52(in Chinese).
季光明, 殷跃洪, 郑正. 中国胶粘剂, 2016, 25(3), 52.
6 Guo Z R, Zhao Y, Zhang X, et al. China Building Waterproofing, 2016,18(12), 9(in Chinese).
郭增荣, 赵宇, 张新, 等. 中国建筑防水, 2016,18(12), 9.
7 Mohammad R,Michael S. Journal of Composite Science, 2018, 2, 42.
8 Lionetto F, Dell' Anna R, Montagna F. Composites part A: Applied Science and Manufacturing, 2016, 82, 119.
9 Wen L W, Xiao J, Wang X F, et al. Journal of Nanjing University of Aeronautics and Astronautics, 2015, 47(5), 637 (in Chinese).
文立伟, 肖军, 王显峰, 等. 南京航空航天大学学报, 2015, 47(5), 637.
10 Lukaszewicz D, Ward C, Potter K. Composites Part B: Engineering, 2012, 43(3), 997.
11 Pedro R, Hamed A, Andrzej T, et al. Journal of Composite Materials, 2013(1), 17.
12 Bruce M. Manufacturing Engineering, 2008, 140(4), 6.
13 Dakai B, Bradley R, Shim D J, et al. Journal of Manufacturing Science and Engineering, 2017, 139(7), 29.
14 Wood K. High-Performance Composites, 2014, 22(1), 25.
15 Grouve W, Warnet L, Akkermanl R. International Journal of Material Forming, 2010(3), 710.
16 Lukaszewicz D, Potter K. International Technical Conference Advanced Composites, 2011(5), 126.
17 Muhammad A, Peter M, Ralf S. Journal of Composite Materials, 2012, 47(4), 485.
18 Muhammad A, Peter M, Ralf S. Advances in Polymer Technology, 2010, 29(2), 98.
19 Stokes C, Compston P. Composites part A: Applied Science and Manufacturing, 2016(88), 190.
20 Stokes C, Compston P. Composites part A: Applied Science and Manufac-turing, 2016(84), 17.
21 Stokes C, Compston P. Composites: Part A, 2015, 75, 104.
22 Tannous M, Barasinski A, Binetruy C. Journal of Materials Processing Technology, 2016, 29, 587.
23 Song Q H, Liu W P, Xiao J, et al.Acta Materiae Compositae Sinica, 2018, 35(5), 1149 (in Chinese).
宋清华, 刘伟平, 肖军, 等. 复合材料学报, 2018, 25(5), 32.
24 Qureshi Z, Swait T, Scaife R.Composites: Part B, 2014(66), 255.
[1] 胡学飞. 低熔点玻璃粉对水冷壁涂层组织和性能的影响[J]. 材料导报, 2021, 35(Z1): 189-194.
[2] ZEZE Armande Loraine Phalé, 徐红岩, 张默, 马国伟. 环氧树脂-地聚物复合涂层材料耐海水腐蚀性研究[J]. 材料导报, 2021, 35(Z1): 600-606.
[3] 金贺荣, 张钊瑞, 韩民峰, 井士涛, 赵丁选. 表面粗糙度对热轧不锈钢复合板界面质量的影响[J]. 材料导报, 2021, 35(8): 8151-8156.
[4] 翟建树, 李春燕, 田霖, 卢煜, 寇生中. Fe基非晶涂层耐腐蚀性能的影响因素及提升措施综述[J]. 材料导报, 2021, 35(3): 3129-3140.
[5] 高君华, 黄浩, 曾冲, 郑瑞伦. 孔隙率对传感器多孔电极材料导电性能的影响[J]. 材料导报, 2021, 35(18): 18018-18023.
[6] 郑少军, 刘天乐, 高鹏, 蒋国盛, 冯颖韬, 李丽霞, 陈宇. 固井水泥石孔隙结构演变及力学强度发展规律[J]. 材料导报, 2021, 35(12): 12092-12098.
[7] 李嘉鹏, 李威翰, 刘嘉良, 李永玲, 李飞. 透水路面制品渗透性能的研究进展[J]. 材料导报, 2020, 34(Z2): 265-268.
[8] 张绍康, 王茹, 徐玲琳, 钟世云, 张国防, 王培铭. 羟乙基甲基纤维素改性水泥砂浆的物理力学性能和孔隙率[J]. 材料导报, 2020, 34(Z2): 607-611.
[9] 张松, 杨静, 胥永刚, 张明月. 仿SIMA法钎焊对Mn-Cu合金与430不锈钢接头组织及性能的影响[J]. 材料导报, 2020, 34(8): 8126-8130.
[10] 秦翔, 杨军, 邹德宁, 谢燕翔. 选区激光熔化线能量对Inconel718涂层组织结构及性能的影响[J]. 材料导报, 2020, 34(4): 4093-4097.
[11] 成烨, 还大军, 李勇, 刘洪全, 周洲. AS4D/PEEK热塑性复合材料激光固结缠绕工艺参数优化[J]. 材料导报, 2020, 34(22): 22190-22194.
[12] 肖丰强, 王东坡, 胡文彬, 崔雷, 高志明, 周兰聚. 终轧温度对2205/Q235B双相不锈钢复合板组织和性能的影响[J]. 材料导报, 2020, 34(16): 16119-16124.
[13] 丁杨, 邓满宇, 周双喜, 王中平, 董晶亮, 魏永起. 基于COMSOL®模拟材料孔隙率与导热系数的演变关系[J]. 材料导报, 2019, 33(z1): 211-215.
[14] 曹忠亮, 富宏亚, 付云忠, 邵忠喜. 基于自动铺放技术的热塑性复合材料原位固化成型研究进展:热传导行为及层间性能[J]. 材料导报, 2019, 33(5): 894-900.
[15] 卢林, 吴文恒, 龙倩蕾, 张亮, 张济山. 喷射成形工艺参数对沉积坯质量的影响[J]. 材料导报, 2019, 33(3): 390-394.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed