Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (3): 75-79    https://doi.org/10.11896/j.issn.1005-023X.2017.03.013
  材料综述 |
Bammann-Chiesa-Johnson粘塑性本构模型的参数识别方法与验证*
周婷婷1,2, 王罡2, 杨洋1,2, 李遥1, 帅茂兵1
1 表面物理与化学重点实验室,江油 621908;
2 清华大学精密超精密制造装备及控制北京市重点实验室,北京 100084;
A Comprehensive Method of Parameter Identification and Validation for Bammann-Chiesa-Johnson Viscoplasticity Constitutive Model
ZHOU Tingting1,2, WANG Gang2, YANG Yang1,2, LI Yao1, SHUAI Maobing1
1 Science and Technology on Surface Physic and Chemistry Laboratory, Jiangyou 621908;
2 Beijing Key Lab of Precision/Ultra-precision Manufacturing Equipments and Control, Tsinghua University, Beijing 100084;
下载:  全 文 ( PDF ) ( 1559KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 Bammann-Chiesa-Johnson(BCJ)粘塑性本构模型对材料力学响应的再现和预测能力强烈依赖于其模型参数的确定,而模型参数的确定往往是通过反分析方法来进行。由于BCJ粘塑性模型包含了应变、应变率和温度耦合效应以及加载路径和温度历史,其常数多达18个,所以寻找最佳的模型参数识别值十分繁琐。针对BCJ本构模型参数复杂、识别困难的问题,本文基于参数的物理意义,在准静态、蠕变及动态加载试验基础上,通过模型参数解耦分离、粒子群智能优化的方法分6步对18个材料常数进行识别,并用识别结果对1060纯铝动态加载试验力学响应进行模拟,模拟结果与试验结果符合良好。通过定量化误差分析,证明了BCJ粘塑性模型对实验数据的预测具有较高精度,该模型参数识别方法科学可行。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
周婷婷
王罡
杨洋
李遥
帅茂兵
关键词:  BCJ粘塑性模型  参数识别  参数解耦  粒子群智能优化算法  1060纯铝    
Abstract: The Bammann-Chiesa-Johnson (BCJ) viscoplasticity constitutive model is advanced to predict mechanical behavior of metals. And the capability of prediction relies on the determination of the model parameters. Normally, the parameters would be identified by using the back-analysis method. However, the method is very complicated because there are quite a number of parameters in the BCJ model and it is not easy to obtain the optimal values. These parameters are involved to describe the coupling effects of strain, strain rate, temperature, as well as the load path and temperature history. This paper proposed a method to identify the 18 papameters, in which comprehensive experiments, based on the physics of the parameters, had been conducted, including quasi-static tests, creep tests and the split Hopkinson pressure bar (SHPB) tests, furthermore parameters decoupling and the Particle Swarm Optimization (PSO) algorithm had been applied. The dynamic mechanical response of Al 1060 was taken to validate the method and the prediction on flow stressesis in good agreement with the test data. The quantitative error analysis showed that the method was effective for a large range of strain rate and temperature variation with high accuracy.
Key words:  Bammann-Chiesa-Johnson viscoplasticity model    parameter identification    parameter decoupling    particle swarm optimization    aluminum 1060
出版日期:  2017-02-10      发布日期:  2018-05-02
ZTFLH:  O344  
基金资助: *北京市自然科学基金面上项目(3152013);清华大学摩擦学国家重点实验室自主科研重点项目(SKLT2013A01);国家自然科学基金委员会-中国工程物理研究院联合基金(U1530140)
作者简介:  周婷婷:女,1990年生,硕士研究生,研究方向为BCJ本构模型识别方法及其在金属精密超精密加工中的应用 E-mail:775943970@qq.com 王罡:通讯作者,男,1976年生,博士,副研究员,硕士研究生导师,研究方向为数字化制造、精密/超精加工材料响应 E-mail:gwang@tsinghua.edu.cn
引用本文:    
周婷婷, 王罡, 杨洋, 李遥, 帅茂兵. Bammann-Chiesa-Johnson粘塑性本构模型的参数识别方法与验证*[J]. 《材料导报》期刊社, 2017, 31(3): 75-79.
ZHOU Tingting, WANG Gang, YANG Yang, LI Yao, SHUAI Maobing. A Comprehensive Method of Parameter Identification and Validation for Bammann-Chiesa-Johnson Viscoplasticity Constitutive Model. Materials Reports, 2017, 31(3): 75-79.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.03.013  或          https://www.mater-rep.com/CN/Y2017/V31/I3/75
1 Johnson G C, Bammann D J. Discussion of stress rates in finite deformation problems[J]. Int J Solids Struct,1984,20(8):725.
2 Bammann D J. An internal variable model of viscoplasticity[J]. Int J Eng Sci,1984,22(8-10):1041.
3 Horstemeyer M F, Lathrop J, Gokhale A M, et al. Modeling stress state dependent damage evolution in a cast Al-Si-Mg aluminum alloy[J]. Theor Appl Fract Mech,2000,33(1):31.
4 Tanner A B, Mcginty R D, Mcdowell D L. Modeling temperature and strain rate history effects in OFHC Cu[J]. Int J Plast,1999,15(6):575.
5 Ahad F R, Enakoutsa K, Solanki K N, et al. Nonlocal modeling in high-velocity impact failure of 6061-T6 aluminum[J]. Int J Plast,2013,55(4):108.
6 Guo Y B, Wen Q, Horstemeyer M F. An internal state variable plasticity-based approach to determine dynamic loading history effects on material property in manufacturing processes[J]. Int J Mech Sci,2005,47(9):1423.
7 Guo Y B, Wen Q, Woodbury K A. Dynamic material behavior mo-deling using internal state variable plasticity and its application in hard machining simulations[J]. J Manuf Sci Eng,2006,128(3):749.
8 Harley E J, Miller M P, Bammann D J. Experimental study of internal variable evolution in SS304L, at multiple rates and temperatures[J]. J Eng Mater Technol,1999,121(2):162.
9 Sherburn J A, Horstemeyer M F, Bammann D J, et al. Application of the Bammann inelasticity internal state variable constitutive model to geological materials[J]. Geophys J Int,2011,184(3):1023.
10 Enakoutsa K, Ahad F R, Solanki K N, et al. Localization effects in bammann-chiesa-johnson metals with damage delocalization[C]// ASME 2011 International Mechanical Engineering Congress and Exposition,2011:505.
11 Mei Q C, Bammann D J, Horstemeyer M F. A continuum model for hydrogen-assisted void nucleation in ductile materials[J]. Modell Simul Mater Sci Eng,2013,21(5):1097.
12 Wang Guosheng. High-speed cutting numerical simulation based on BCJ constitutive model [D]. Shanghai: Shanghai Jiao Tong University,2011(in Chinese).
王国胜.基于BCJ本构模型的高速切削过程数值模拟研究[D].上海:上海交通大学,2011.
13 Salehghaffari S, Rais-Rohani M, Marin E B, et al. A new approach for determination of material constants of internal state variable based plasticity models and their uncertainty quantification[J]. Comput Mater Sci,2012,55:237.
14 Chuzhoy L, Devor R E, Kapoor S G, et al. Machining simulation of ductile iron and its constituents, Part 1: Estimation of material mo-del parameters and their validation[J]. J Manuf Sci Eng,2003,125(2):181.
15 Miller M P, Harley E J, Bammann D J. Reverse yield experiments and internal variable evolution in polycrystalline metals[J]. Int J Plast,1999,15(15):93.
16 Chuzhoy L, Devor R E, Kapoor S G. Machining simulation of ductile iron and its constituents, Part 2: Numerical simulation and experimental validation of machining[J]. J Manuf Sci Eng,2003,125(2):192.
17 Nie Z G, Wang G, Yu J C, et al. Phase-based constitutive modeling and experimental study for dynamic mechanical behavior of martensitic stainless steel under high strain rate in a thermal cycle[J]. Mech Mater,2016,101:160.
18 Peng Y B, Wang G, Zhu T, et al. Dynamic mechanical behaviors of 6082-T6 aluminum alloy[J]. Adv Mechan Eng,2013,5(12):878016.
19 Salehghaffari S, Raisrohani M, Marin E, et al. An evidence-dased framework for determination of material constants in advanced plasticity models[C]// AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference,2011.
20 Tan Yang, Chi Yilin, Huang Yayu, et al. An approach for identification of material parameters in Bammann-Chiesa-Johnson viscoplastic constitutive model[J]. Chin J Comput Mech,2015(4):490(in Chinese).
谭阳,迟毅林,黄亚宇,等.Bammann-Chiesa-Johnson粘塑性本构模型材料参数的一种识别方法[J]. 计算力学学报,2015(4):490.
21 Bammann D J. Modeling temperature and strain rate dependent large deformations of metals[J]. Appl Mech Rev,1990,43(5S):S312.
22 Davies E D H, Hunter S C. The dynamic compression testing of so-lids by the method of the split Hopkinson pressure bar[J]. J Mech Phys Solids,1963,11(3):155.
[1] 辛景舟, 周建庭, 肖阳剑, 李晓庆, 苏欣. 混凝土结构材料非线性本构参数识别算法研究[J]. 材料导报, 2018, 32(16): 2743-2749.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed