Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (8): 1263-1266    https://doi.org/10.11896/j.issn.1005-023X.2018.08.011
  材料研究 |
不锈钢表面电镀锡银钎料的润湿特性
王星星1, 彭进1, 崔大田1, 孙国元1, 何鹏2
1 华北水利水电大学机械学院,郑州 450045;
2 哈尔滨工业大学先进焊接与连接国家重点实验室, 哈尔滨 150001
Wetting Characteristics of Tin-electroplated Silver Brazing Alloys on the Surface of 304 Stainless Steel
WANG Xingxing1, PENG Jin1, CUI Datian1, SUN Guoyuan1, HE Peng2
1 School of Mechanical Engineering,North China University of Water Resources and Electric Power,Zhengzhou 450045;
2 State Key Laboratory of Advanced Welding and Joining,Harbin Institute of Technology,Harbin 150001
下载:  全 文 ( PDF ) ( 1662KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为揭示不锈钢表面电镀锡银钎料的润湿特性,借助润湿试验炉、影像式烧结点试验仪、扫描电镜、X射线衍射仪、能谱分析仪对电镀锡银钎料的润湿行为、动态铺展过程、界面组织、物相组成及润湿界面化学元素分布进行了分析。研究表明,优先铺展的前驱膜是改善电镀锡银钎料润湿性的本质原因。润湿过程中出现的前驱膜效应,主要是试验中FB102钎剂中的硼酐引起的。电镀锡银钎料与不锈钢界面出现的Cu41Sn11相过渡层,垂直于润湿界面呈柱状向钎料内生长。随着Sn含量升高,电镀锡银钎料在不锈钢表面的润湿面积呈增大趋势;与同Sn含量(2.4%~7.2%,质量分数)的传统AgCuZnSn钎料相比,电镀锡银钎料在不锈钢表面的润湿面积提高了8.1%~12.5%。当Sn含量为7.2%时,电镀锡银钎料的润湿面积高达481 mm2。电镀锡银钎料与不锈钢母材的接合界面是扩散-化合物混合型形式。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王星星
彭进
崔大田
孙国元
何鹏
关键词:  304不锈钢  电镀锡银钎料  前驱膜效应  润湿面积  能谱分析    
Abstract: Aiming at revealing the wetting characteristic of Sn-electroplated Ag brazing alloys on the surface of 304 stainless steel, wetting test furnace, imaging-type sintering point tester, scanning electron microscope (SEM), X-ray diffractometer (XRD), energy dispersive spectrometer (EDS) were applied to analyze the wetting behavior, dynamic spreading process, interfacial microstructure, phase composition and element distribution. And the chemical elements of the interface was analyzed by line scan. The results suggested that the improved wettability of the Sn-electroplated Ag brazing alloy on stainless steel surface is intrinsically caused by the prior spreading of the wetting precursor, which is mainly induced by the B2O3 in FB102 flux employed during wetting experiment. Cu41Sn11 compound phase, which appears at the interface of Sn-electroplated Ag brazing alloys and stainless steel, is perpendicular to the wetting interface and grow inward the brazing seam form a “column” shape. With the increase of Sn content, the wetting area of Sn-electroplated Ag brazing alloys exhibited an expanding trend on the surface of stainless steel. Compared with the traditional brazing filler metals, under the same Sn content, the wetting area of Sn-electroplated Ag brazing alloys increased about 8.1%—12.5%. When Sn content is 7.2 wt%, the wetting area of Sn-electroplated Ag brazing alloys reached the maximum value of about 481 mm2. Our research also implied the diffusion-compound-type bonding form of the interface between Sn-electroplated Ag brazing alloys and 304 stainless steel.
Key words:  304 stainless steel    Sn-electroplated Ag brazing alloys    precursor effect    wetting area    energy spectrum analysis
出版日期:  2018-04-25      发布日期:  2018-05-11
ZTFLH:  TG454  
基金资助: 国家自然科学基金(51705151);河南省自然科学基金(162300410191);河南省高等学校重点科研项目(17A430021);华北水利水电大学博士科研启动基金(201704001)
作者简介:  王星星:男,1984年生,博士,讲师,主要研究方向为新型银基钎料及其钎焊工艺开发 E-mail:paperwxx@126.com
引用本文:    
王星星, 彭进, 崔大田, 孙国元, 何鹏. 不锈钢表面电镀锡银钎料的润湿特性[J]. 《材料导报》期刊社, 2018, 32(8): 1263-1266.
WANG Xingxing, PENG Jin, CUI Datian, SUN Guoyuan, HE Peng. Wetting Characteristics of Tin-electroplated Silver Brazing Alloys on the Surface of 304 Stainless Steel. Materials Reports, 2018, 32(8): 1263-1266.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.08.011  或          https://www.mater-rep.com/CN/Y2018/V32/I8/1263
1 Wang He,Xue Songbai,Liu Shuang. Effect of Ag on properties of Ag-contained filler metals[J].The Chinese Journal of Nonferrous Metals,2016,26(11):2340(in Chinese).
王禾,薛松柏,刘霜.银元素对含银钎料性能的影响[J].中国有色金属学报,2016,26(11):2340.
2 Long W M,Zhang G X,Zhang Q K. In situ synthesis of high strength Ag brazing filler metals during induction brazing process[J].Scripta Materialia,2016,110:41.
3 Maniani M E,Sabbar A. Partial and integral enthalpies of mixing in the liquid Ag-In-Sn-Zn quaternary alloys[J].Thermochimica Acta,2014,592:1.
4 Ma Chaoli,Xue Songbai,Wang Bo. Study on novel Ag-Cu-Zn-Sn brazing filler metal bearing Ga[J].Journal of Alloys and Compounds,2016,688:854.
5 Wierzbicki L J,Malec W,Stobrawa J,et al. Studies into new, environment-alloy friendly Ag-Cu-Zn-Sn brazing alloys of low silver content[J].Archives of Metallurgy and Materials,2011,56(1):147.
6 Watanabe T,Yanagisawa A,Sasaki T. Development of Ag based brazing filler metal with low melting point [J].Science and Technology of Welding and Joining,2011,16(6):502.
7 Lai Zhongmin,Xue Songbai,Han Xianpeng,et al. Study on microstructure and property of brazed joint of AgCuZn-X(Ga, Sn, In, Ni) brazing alloy[J].Rare Metal Materials and Engineering,2010,39(3):397.
8 Ma Jia,Long Weimin,He Peng,et al. Effect of gallium addition on microstructure and properties of Ag-Cu-Zn-Sn alloys[J].China Wel-ding (English Edition),2015,24(3):6.
9 Khorunov V F,Stefaniv B V,Maksymova S V. Effect of nickel and manganese on structure of Ag-Cu-Zn-Sn system alloys and strength of brazed joints[J].Paton Welding Journal,2014,4:22.
10 Wang Xingxing,Tan Qunyan,Xue Peng,et al. Phase composition and formation mechanism of diffusion transition zone for silver-based brazing alloys with tin coatings[J].Materials Review B:Research Papers,2017,31(4):66(in Chinese).
王星星,谭群燕,薛鹏,等. 镀锡银钎料扩散过渡区的物相和形成机制[J]. 材料导报:研究篇,2017,31(4):66.
11 Edmund B W,Gary S G,David R H. Precursor film controlled wetting of Pb on Cu[J].Physical Review Letters,2003,91:6102.
12 Xian A P. Precursor film of tin-based active solder wetting on cera-mics[J].Journal of Materials Science,1993,28:1019.
13 Ma Guangcai,Li Wen,Li Hong,et al. Wetting behavior and interfacial characteristics of In-Sn alloy on amorphous and crystalline Cu46Zr45Al7Gd2 substrates[J].Acta Metallurgica Sinica,2006,42(2):201(in Chinese).
马广才,李文,李宏,等.In-Sn合金熔体在非晶和晶态Cu46Zr45Al7Gd2合金上的润湿性及界面特性[J].金属学报,2006,42(2):201.
14 Li M G,Sun D Q,Qiu X M,et al. Effect of tin on melting temperature and microstructure of Ag-Cu-Zn-Sn filler metals[J].Materials Science and Technology(United Kingdom),2005,21(11):1318.
15 Du Nan,Wang Shuaixing,Zhao Qing,et al. Effects of boric acid on microstructure and corrosion resistance of boric/sulfuric acid anodic film on 7050 aluminum alloy[J].Transactions of Nonferrous Metals Society of China,2012,22(7):1655.
[1] 姚艺, 任延杰, 彭玉宬, 陈荐, 邱玮, 周立波. 304不锈钢在熔融多硫化钠中的高温腐蚀行为研究[J]. 材料导报, 2023, 37(14): 22010026-5.
[2] 薛海涛, 李涛, 郭卫兵, 陈翠欣, 赵江龙, 丁志杰. 钎焊参数对Al2O3陶瓷/304不锈钢接头组织和性能的影响[J]. 材料导报, 2023, 37(1): 21090089-5.
[3] 刘鹏, 马吉恩, 方攸同, 李刚. 多次补焊对304不锈钢焊接接头性能的影响[J]. 材料导报, 2022, 36(Z1): 21120176-5.
[4] 王呼和, 新巴雅尔, 李晓杰. 爆炸冲击诱发AISI304不锈钢马氏体微观形貌研究[J]. 材料导报, 2022, 36(10): 20110061-6.
[5] 陈宇强, 张浩, 黄浩, 张文涛, 谢功园, 刘文辉, 潘素平, 宋宇峰, 刘阳. 基于高温扭转方法制备6061铝合金/304不锈钢层状复合材料的组织及性能[J]. 材料导报, 2021, 35(6): 6167-6173.
[6] 方振兴, 祁文军, 李志勤. 304不锈钢激光熔覆搭接率对CoCrW涂层组织与耐磨及耐腐蚀性能的影响[J]. 材料导报, 2021, 35(12): 12123-12129.
[7] 李平, 赵焰杰, 王李波. 基于交互正交试验的304不锈钢冲蚀磨损性能的影响因素研究[J]. 材料导报, 2020, 34(8): 8149-8153.
[8] 陈永城, 罗子艺, 张宇鹏, 易耀勇, 李明军. 紫铜/304不锈钢激光焊接接头显微组织及力学性能[J]. 材料导报, 2019, 33(2): 325-329.
[9] 张潇华, 于思荣, 谭哲, 郭丽娟, 刘旭. 304不锈钢在Al-6Si-10Cu储能合金液中的腐蚀行为[J]. 材料导报, 2019, 33(10): 1681-1684.
[10] 邓云华, 岳喜山, 管志超. 304不锈钢消音蜂窝钎焊工艺、组织及力学性能分析[J]. 《材料导报》期刊社, 2018, 32(14): 2425-2430.
[11] 杨 丹,宁玉恒,赵宇光,朱国斌,徐晓峰. 工艺参数对304不锈钢表面激光熔覆Ni基合金涂层的组织、耐磨性及耐腐蚀性的影响[J]. 《材料导报》期刊社, 2017, 31(24): 133-140.
[12] 张先炼, 何晓聪, 赵伦, 邢保英, 程强. TA1异质自冲铆接头力学性能及失效机理*[J]. 《材料导报》期刊社, 2017, 31(20): 92-95.
[13] 肖智杰, 曾凯, 何晓聪, 邢保英, 张龙, 孙鑫宇. SUS304不锈钢点焊与胶焊接头的疲劳强度分析*[J]. 《材料导报》期刊社, 2017, 31(16): 112-116.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed