Surface Modification of Flake Graphite for Carbon-containing Castables: A Technological Review
BI Yubao1,2, WANG Huifang1,2, ZHAO Wanguo1, LIANG Feng1, ZHANG Haijun1
1 The State Key Laboratory of Refractory and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081; 2 High Temperature Materials Institute, Henan University of Science and Technology, Luoyang 471003;
Abstract: The monolithic refractories have acquired wide application for its convenient installation, good monolithic structure and firing-free character. Thermal shock resistance and slag resistance of refractories can be significantly improved by the incorporation of flake graphite. However, the poor aqueous wettability and dispersibility of flake graphite make it hard to be directly applied to carbon-containing castables. Surface modification of graphite is generally regarded as one of crucial ways to solve these problems. The advances in surface modification of flake graphite are reviewed in this paper, including the formation of binary oxide coatings(e.g. Al2O3, SiO2, TiO2 and ZrO2) or ternary oxide coatings (e.g. MgAl2O4, mullite and calcium aluminate) by sol-gel method, formation of carbide coatings (e.g. SiC and TiC) at high temperature by in-situ reaction method,and improving aqueous wettability of the graphite by using appropriate surfactants. The effect of modified graphite on the properties of carbon containing castables and the effect of surface modification methods and preparation processing factors on the coating as well as coating formation mechanism are summarized. Moreover, potential research directions of carbon containing castables are also prospected from the perspectives of improving the bonding between coating and graphite, and developing advanced heating technology and efficient surfactants for preparing of surface-modified graphite etc.
1 Franklin S A, Tucker B J S. Hot strength and thermal shock resis-tance of magnesia-carbon refractoriness[J]. British Ceram Trans,1995, 94(4):151. 2 Munoz V, Pena P, Martinez A G T. Physical,chemical and thermal characterization of alumina-magnesia-carbon refractories[J]. Ceram Int, 2014,40(7):9133. 3 Oliveira I R, Menegazzo B A, Studart A R, et al. Zero-cement refractory castables[J]. Am Ceram Soc Bull,2002,81(12):27. 4 Cooper C F. Graphite: Nature′s unique raw material[J]. J Canadian Ceram Soc,1994,63(3):197. 5 Yamaguchi A, Yu J K. Behavior of carbon obtained from pitch and resin added to carbon-containing refractories[J]. J Ceram Soc Jpn,1994,102(1):75. 6 Zoglmeyr, Guenter. Oxidation behavior of carbon containing basic refractories[J]. Veitsch-Tadex Rundschau,1984,2:382. 7 Li X M, Rigaud M, Palco S. Oxidation kinetics of graphite phase in magnesia-carbon refractories[J]. J Am Ceram Soc,2005,78(4):965. 8 Zhang S W, Lee W E. Carbon containing castables: Current status and future prospects[J]. British Ceram Trans,2002,101(1):1. 9 Zhu B Q. Current situation and development of the carbon-containing castables[J]. Pefractories,1999,33(1):50(in Chinese). 朱伯铨. 含炭浇注料的现状与发展[J]. 耐火材料,1999,33(1):50. 10 Yoshimatsu H, Fujiwara S, Konishi R, et al. Wettability by water and oxidation resistance of alumina-coated graphite powder[J]. J Ceram Soc Jpn,1995,103(1201):929. 11 Yilmaz S, Kutmen-kalpakli Y, Yilmaz E. Synthesis and characte-rization of boehmitic alumina coated graphite by sol-gel method[J]. Ceram Int,2009,35(5):2029. 12 Kawabata K, Yoshimatsu H, Fujii E, et al. Effect of Al2O3 raw materials on fluidity of Al2O3-coated graphite powder slurry[J]. J Ceram Soc Jpn,2000,109(1269):470. 13 Qiu H L, Ye F B, Zhong X C. Influence of processed graphite on properties of graphite-containing bauxite-based castables[J]. Refractories, 2005,39(6):422(in Chinese). 邱海龙, 叶方保, 钟香崇. 改性石墨对矾土基浇注料性能的影响[J]. 耐火材料,2005,39(6):422. 14 Zhao C R, Zhang S H, Wang G, et al. Effect of pelletized graphite addition on properties of Al2O3-SiC-C castables[J]. Refactories, 2014,48(1):54 (in Chinese). 赵臣瑞,张三华,王冠,等.造粒石墨加入量对Al2O3-SiC-C质浇注料性能的影响[J].耐火材料,2014,48(1):54. 15 Zhang S W, Lee W E. Improving the water-wettability and oxidation resistance of graphite using Al2O3/SiO2 sol-gel coatings[J]. J Eur Ceram Soc,2003,23(8):1215. 16 Kawabata K, Yoshimatsu H, Fujii E, et al. Fluidity of Al2O3-coated graphite powder slurry[J]. J Ceram Soc Jpn,2000,108(8):753. 17 Kawabata K, Yoshimatsu H, Fujii E, et al. Properties of Al2O3-C castable refractories with graphite powder coated with Al2O3[J]. J Ceram Soc Jpn,2001,109(1267):270. 18 Bahlawane N. Novel sol-gel process depositing α-Al2O3 for the improvement of graphite oxidation-resistance[J]. Thin Solid Films,2001, 396(1-2):126. 19 Wang R, Hashimoto R, Fujishima A, et al. Light-induced amphiphilic surfaces[J]. Nature,1997,388(6641):431. 20 Yu J K, Ueno S, Hiragushi K. Improvement in flowability, oxidation resistance and water wettability of grahitepowders by TiO2 coa-ting[J]. J Ceram Soc Jpn,1996,104(1210):481. 21 Sunwoo S, Kim J H, Lee K G, et al. Preparation of ZrO2 coated graphite powders[J]. J Mater Sci,2000,35(14):3677. 22 Meng B, Peng J H. Effects of in situ synthesized mullite whiskers on flexural strength and fracture toughness of corundum-mullite refractory materials[J]. Ceram Int,2013,39(2):1525. 23 Sharapova V V. Contemporary tendencies of using mullite-silica refractories in manufacturing structural materials[J]. Refract Ind Ceram, 2014,54(6):467. 24 Luz A P, Neto A B S, Santos T, et al. Mullite-based refractory castable engineering for the petrochemical industry[J]. Ceram Int,2013,39(8):9063. 25 Moritz K, Aneziris C G, Hesky D, et al. Magnesium aluminate spinel ceramics containing aluminum titanate for refractory applications[J]. J Ceram Sci Technol,2014,5(2):125. 26 Qin H B, Li H X, et al. Influence of spinel on the fracture energy of refractory castable[J]. Mater Sci Forum,2013,745:632. 27 Gehre P, Aneziris C G, Veres D, et al. Improved spinel-containing refractory castables for slagging gasifiers[J]. J Eur Ceram Soc,2013, 33(6):1077. 28 Saberi A, Golestani-fard F, Sarpoolaky H, et al. Development of MgAl2O4 spinel coating on graphite surface to improve its water-wettability and oxidation resistance[J]. Ceram Int,2009,35(1):457. 29 Mukhopadhyay S, Dutta S, Ansar S A, et al. Spinal-coated graphite for carbon containing refractory castables[J]. J Am Ceram Soc,2009,92(8):1895. 30 Saberi A, Golestani-fard F, Willert-porada M, et al. Improving the quality of nanocrystalline MgAl2O4 spinel coating on graphite by a prior oxidation treatment on the graphite surface[J]. J Eur Ceram Soc,2008, 28(10):2011. 31 Ansar S A, Bhattacharya S, Dutta S, et al. Development of mullite and spinel coatings on graphite for improved water-wettability and oxidation resistance[J]. Ceram Int,2010,36(6):1837. 32 Mukhopadhyay S. Improved sol gel spinel(MgAl2O4) coatings on graphite for application in carbon containing high alumina castables[J]. J Sol-gel Sci Technol,2010,56(1):66. 33 Mukhopadhyay S, Ansar S A, Paul D, et al. Characteristics of refractory castables containing mullite and spinel coated graphites[J]. Mater Manuf Process,2012,27(2):177. 34 Mukhopadhyay S, Paul D, Bhowmick G, et al. Mullite coatings on graphite for application in carbon containing monolithic refractory[J]. Ind Ceram,2011,31(2):129. 35 Mukhopadhyay S, Das G, Biswas I. Nanostructured cementitious sol gel coating on graphite for application in monolithic refractory composites[J]. Ceram Int,2011,38(2):1717. 36 Dutta S, Das P, Das A, et al. Significant improvement of refractoriness of Al2O3-C castables containing calcium aluminate nano-coa-tings on graphite[J]. Ceram Int,2014,40(3):4407. 37 Mukhopadhyay S, Dutta S. Comparison of solid state sol-gel derived calcium aluminate coated graphite and characterization of prepared refractory composite[J]. Ceram Int,2012,38(6):4997. 38 Mukhopadhyay S. Nanoscale calcium aluminate coated graphite for improved performance of alumina based monolithic refractory composite[J]. Mater Res Bull,2013,48(7):2583. 39 Mukhopadhyay S, Mondal C, Chakraborty A, et al. In depth stu-died on cementitiousnanocoatings on graphite for its contribution in corrosion resistance of alumina based refractory composite[J]. Ceram Int,2015, 41:11999. 40 Mukhopadhyay S, Dana K, Moitra S, et al. Thermal and thermomechanical characteristics of monolithic refractory composite matrix containing surface-modified graphite[J]. Ceram Int,2016,42:6015. 41 刘阳, 曾令可, 刘明泉. 非氧化物陶瓷及其应用[M]. 北京: 化学工业出版社,2011:1. 42 Huang J F, Deng F, Cao L Y, et al. Influence of infiltration additive on the phase, microstructure and oxidation resistance of SiC coating for graphite materials[J]. Key Eng Mater,2007,336-338:1756. 43 Aliakbarpour S, Zakeri M, Rahimipour M R, et al. Effect of SiC-mullite coatings on oxidation resistance of graphite[J]. Adv Appl Ceram,2014,113(6):358. 44 Ding J, Deng C J, Yuan W J, et al. Novel synthesis and characte-rization of silicon carbide nanowires on graphite flakes[J]. Ceram Int,2014,40(3):4001. 45 Liu X, Zhang S W. Low-temperature preparation of titanium carbide coatings on graphite flakes from molten salts[J]. J Am Ceram Soc,2008, 91(2):667. 46 Liu X, Wang Z, Zhang S W. Molten salt synthesis and characterization of titanium carbide-coated graphite flakes for refractory castable applications[J]. Int J Appl Ceram Technol,2011,8(4):911. 47 Ding J, Deng C J, Zhang X J, et al. Synthesis of titanium carbide coating on surface of graphite by molten salt media[J]. J Funct Mater, 2014,45(3):03066(in Chinese). 丁军, 邓承继, 张小军, 等. 熔盐介质中石墨表面碳化钛包覆的研究[J]. 功能材料,2014,45(3):03066. 48 Ono Y, Matsumoto T, Amemiya Y. Development of the basic mo-nolithic refractories containing hydrophilic graphite[R]. Reports of the Research Laboratory, Asahi Glass Co., Ltd,1993:35. 49 Suzuki H, Araki H, Noda T. Microstructure of SiC thin films produced on graphite by excimer-laser chemical vapor deposition[J]. J Mater Sci Lett,1994,13(13):49. 50 Watkins T R, Green D J. Fracture behavior of chemically-vapor-deposited SiC-coated graphite:Ⅰ. Experimental results[J]. J Am Ceram Soc,1993,76(12):3066. 51 Richards M R, Richards A C, Taya M, et al. Thermomechanical and chemical properties of SiC-C functionally gradient coatings on graphite[J]. J Vac Sci Technol: Vac Surf Films,1995,13(3):1196. 52 Park S J, Han J G, Boo J H. Growth of protective coating layers on graphite using single molecular precursors[C]∥ Proceedings, An-nual Technical Conference-Society of Vacuum Coaters. Chicago,1999:368. 53 金谷. 表面活性剂化学[M]. 合肥: 中国科学技术大学出版社,2008:1. 54 Wang L L, Yu J, Li Z Y. Dispersibility of graphite in water with different dispersants[J]. New Carbon Mater,2016,31(1):92(in Chinese). 王丽丽, 于锦, 李正元. 分散剂对石墨水悬浮液分散性能的影响[J]. 新型炭材料,2016,31(1):92. 55 Wang H F, Huang Y, He W, et al. Effect of nonionic surfactant on stability of graphite-H2O dispersion[J]. J Funct Mater,2009,40(1):48(in Chinese). 王恒飞, 黄芸, 何伟, 等. 非离子表面活性剂对石墨-H2O分散液稳定影响[J]. 功能材料,2009,40(1):48. 56 Oliveira I R, Salomao R, Pandolfelli V C, et al. High-carbon-content refractory castables[J]. Am Ceram Soc Bull,2003,82(10):9501. 57 Chen Y L, Zhao L, Gong S S, et al. Effect of modified graphite on properties of Al2O3-SiC- C castables for BF trough[J]. Refractories,2013, 47(5):362(in Chinese). 陈玉龙, 赵雷, 龚仕顺, 等. 改性石墨对Al2O3-SiC-C质铁沟浇注料性能的影响[J]. 耐火材料,2013,47(5):362. 58 Nonomura Y, Morita Y, Deguchi S, et al. Anomalously stable dispersions of graphite in water/acetone mixtures[J]. J Colloid Interface Sci,2010,346(1):96. 59 Moraru V, Nikolai L, Dmitriil S. Structural transitions in aqueous suspensions of nature graphite[J]. Colloids Surf,2004,242(1-3):181. 60 Paruchuri V K, Nalaskowski J. The effect of cosurfactants on so-dium dodecyl sulfate micellar structures at a graphite surface[J]. Colloids Surf, 2006,272(3):157. 61 Paruchuri V K, Nguyen A V, Miller J D. Zeta-potentials of self-assemble surface micelles of ionic surfactants adsorbed at hydrophobic graphite surfaces[J]. Colloids Surf,2004,250(1-3):519.