Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (15): 108-114    https://doi.org/10.11896/j.issn.1005-023X.2017.015.016
  材料综述 |
含碳浇注料用鳞片石墨的表面改性技术综述*
毕玉保1,2, 王慧芳1,2, 赵万国1, 梁峰1, 张海军1
1 武汉科技大学省部共建耐火材料与冶金国家重点实验室,武汉 430081;
2 河南科技大学高温材料研究院,洛阳 471003;
Surface Modification of Flake Graphite for Carbon-containing Castables: A Technological Review
BI Yubao1,2, WANG Huifang1,2, ZHAO Wanguo1, LIANG Feng1, ZHANG Haijun1
1 The State Key Laboratory of Refractory and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081;
2 High Temperature Materials Institute, Henan University of Science and Technology, Luoyang 471003;
下载:  全 文 ( PDF ) ( 1473KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 不定形耐火材料由于具有施工方便、整体性好及无需高温烧成等一系列优点而得到广泛应用,鳞片石墨的引入可显著提高耐火材料的热震稳定性和抗渣侵蚀性,但鳞片石墨较差的水润湿性与分散性使其难以直接在浇注料中加以应用,限制了含碳浇注料的发展。石墨表面改性是解决上述问题的有效途径。文章综述了近年来石墨表面改性的研究进展,包括采用溶胶-凝胶法在石墨表面形成二元氧化物(如Al2O3、SiO2、TiO2及ZrO2)涂层或三元复合氧化物(如MgAl2O4、莫来石及铝酸钙等)涂层,通过高温原位反应在石墨表面形成碳化物(如SiC及TiC等)涂层,以及采用合适的表面活性剂来改善鳞片石墨的水润湿性等。分析了表面改性石墨在含碳浇注料中的应用研究状况,对鳞片石墨的表面改性方法、改性层的形成机理及影响因素进行了简要总结,最后从改善表面涂层与石墨基体间的结合方式、降低能耗的先进加热方式及选取高效的表面活性剂等方面对含碳浇注料的未来发展作了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
毕玉保
王慧芳
赵万国
梁峰
张海军
关键词:  鳞片石墨  表面改性  水润湿性  含碳浇注料    
Abstract: The monolithic refractories have acquired wide application for its convenient installation, good monolithic structure and firing-free character. Thermal shock resistance and slag resistance of refractories can be significantly improved by the incorporation of flake graphite. However, the poor aqueous wettability and dispersibility of flake graphite make it hard to be directly applied to carbon-containing castables. Surface modification of graphite is generally regarded as one of crucial ways to solve these problems. The advances in surface modification of flake graphite are reviewed in this paper, including the formation of binary oxide coatings(e.g. Al2O3, SiO2, TiO2 and ZrO2) or ternary oxide coatings (e.g. MgAl2O4, mullite and calcium aluminate) by sol-gel method, formation of carbide coatings (e.g. SiC and TiC) at high temperature by in-situ reaction method,and improving aqueous wettability of the graphite by using appropriate surfactants. The effect of modified graphite on the properties of carbon containing castables and the effect of surface modification methods and preparation processing factors on the coating as well as coating formation mechanism are summarized. Moreover, potential research directions of carbon containing castables are also prospected from the perspectives of improving the bonding between coating and graphite, and developing advanced heating technology and efficient surfactants for preparing of surface-modified graphite etc.
Key words:  flake graphite    surface modification    aqueous wettability    carbon-containing castable
出版日期:  2017-08-10      发布日期:  2018-05-04
ZTFLH:  TQ175.73  
基金资助: *国家自然科学基金面上项目(51472184;51472185)
作者简介:  毕玉保:男,1974年生,博士研究生,讲师,主要从事耐火材料的研究 E-mail:bi_yubao@163.com 张海军:通讯作者,男,1970年生,博士,教授,主要从事无机非金属材料的研究 E-mail:zhanghaijun@wust.com.cn
引用本文:    
毕玉保, 王慧芳, 赵万国, 梁峰, 张海军. 含碳浇注料用鳞片石墨的表面改性技术综述*[J]. 《材料导报》期刊社, 2017, 31(15): 108-114.
BI Yubao, WANG Huifang, ZHAO Wanguo, LIANG Feng, ZHANG Haijun. Surface Modification of Flake Graphite for Carbon-containing Castables: A Technological Review. Materials Reports, 2017, 31(15): 108-114.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.015.016  或          https://www.mater-rep.com/CN/Y2017/V31/I15/108
1 Franklin S A, Tucker B J S. Hot strength and thermal shock resis-tance of magnesia-carbon refractoriness[J]. British Ceram Trans,1995, 94(4):151.
2 Munoz V, Pena P, Martinez A G T. Physical,chemical and thermal characterization of alumina-magnesia-carbon refractories[J]. Ceram Int, 2014,40(7):9133.
3 Oliveira I R, Menegazzo B A, Studart A R, et al. Zero-cement refractory castables[J]. Am Ceram Soc Bull,2002,81(12):27.
4 Cooper C F. Graphite: Nature′s unique raw material[J]. J Canadian Ceram Soc,1994,63(3):197.
5 Yamaguchi A, Yu J K. Behavior of carbon obtained from pitch and resin added to carbon-containing refractories[J]. J Ceram Soc Jpn,1994,102(1):75.
6 Zoglmeyr, Guenter. Oxidation behavior of carbon containing basic refractories[J]. Veitsch-Tadex Rundschau,1984,2:382.
7 Li X M, Rigaud M, Palco S. Oxidation kinetics of graphite phase in magnesia-carbon refractories[J]. J Am Ceram Soc,2005,78(4):965.
8 Zhang S W, Lee W E. Carbon containing castables: Current status and future prospects[J]. British Ceram Trans,2002,101(1):1.
9 Zhu B Q. Current situation and development of the carbon-containing castables[J]. Pefractories,1999,33(1):50(in Chinese).
朱伯铨. 含炭浇注料的现状与发展[J]. 耐火材料,1999,33(1):50.
10 Yoshimatsu H, Fujiwara S, Konishi R, et al. Wettability by water and oxidation resistance of alumina-coated graphite powder[J]. J Ceram Soc Jpn,1995,103(1201):929.
11 Yilmaz S, Kutmen-kalpakli Y, Yilmaz E. Synthesis and characte-rization of boehmitic alumina coated graphite by sol-gel method[J]. Ceram Int,2009,35(5):2029.
12 Kawabata K, Yoshimatsu H, Fujii E, et al. Effect of Al2O3 raw materials on fluidity of Al2O3-coated graphite powder slurry[J]. J Ceram Soc Jpn,2000,109(1269):470.
13 Qiu H L, Ye F B, Zhong X C. Influence of processed graphite on properties of graphite-containing bauxite-based castables[J]. Refractories, 2005,39(6):422(in Chinese).
邱海龙, 叶方保, 钟香崇. 改性石墨对矾土基浇注料性能的影响[J]. 耐火材料,2005,39(6):422.
14 Zhao C R, Zhang S H, Wang G, et al. Effect of pelletized graphite addition on properties of Al2O3-SiC-C castables[J]. Refactories, 2014,48(1):54 (in Chinese).
赵臣瑞,张三华,王冠,等.造粒石墨加入量对Al2O3-SiC-C质浇注料性能的影响[J].耐火材料,2014,48(1):54.
15 Zhang S W, Lee W E. Improving the water-wettability and oxidation resistance of graphite using Al2O3/SiO2 sol-gel coatings[J]. J Eur Ceram Soc,2003,23(8):1215.
16 Kawabata K, Yoshimatsu H, Fujii E, et al. Fluidity of Al2O3-coated graphite powder slurry[J]. J Ceram Soc Jpn,2000,108(8):753.
17 Kawabata K, Yoshimatsu H, Fujii E, et al. Properties of Al2O3-C castable refractories with graphite powder coated with Al2O3[J]. J Ceram Soc Jpn,2001,109(1267):270.
18 Bahlawane N. Novel sol-gel process depositing α-Al2O3 for the improvement of graphite oxidation-resistance[J]. Thin Solid Films,2001, 396(1-2):126.
19 Wang R, Hashimoto R, Fujishima A, et al. Light-induced amphiphilic surfaces[J]. Nature,1997,388(6641):431.
20 Yu J K, Ueno S, Hiragushi K. Improvement in flowability, oxidation resistance and water wettability of grahitepowders by TiO2 coa-ting[J]. J Ceram Soc Jpn,1996,104(1210):481.
21 Sunwoo S, Kim J H, Lee K G, et al. Preparation of ZrO2 coated graphite powders[J]. J Mater Sci,2000,35(14):3677.
22 Meng B, Peng J H. Effects of in situ synthesized mullite whiskers on flexural strength and fracture toughness of corundum-mullite refractory materials[J]. Ceram Int,2013,39(2):1525.
23 Sharapova V V. Contemporary tendencies of using mullite-silica refractories in manufacturing structural materials[J]. Refract Ind Ceram, 2014,54(6):467.
24 Luz A P, Neto A B S, Santos T, et al. Mullite-based refractory castable engineering for the petrochemical industry[J]. Ceram Int,2013,39(8):9063.
25 Moritz K, Aneziris C G, Hesky D, et al. Magnesium aluminate spinel ceramics containing aluminum titanate for refractory applications[J]. J Ceram Sci Technol,2014,5(2):125.
26 Qin H B, Li H X, et al. Influence of spinel on the fracture energy of refractory castable[J]. Mater Sci Forum,2013,745:632.
27 Gehre P, Aneziris C G, Veres D, et al. Improved spinel-containing refractory castables for slagging gasifiers[J]. J Eur Ceram Soc,2013, 33(6):1077.
28 Saberi A, Golestani-fard F, Sarpoolaky H, et al. Development of MgAl2O4 spinel coating on graphite surface to improve its water-wettability and oxidation resistance[J]. Ceram Int,2009,35(1):457.
29 Mukhopadhyay S, Dutta S, Ansar S A, et al. Spinal-coated graphite for carbon containing refractory castables[J]. J Am Ceram Soc,2009,92(8):1895.
30 Saberi A, Golestani-fard F, Willert-porada M, et al. Improving the quality of nanocrystalline MgAl2O4 spinel coating on graphite by a prior oxidation treatment on the graphite surface[J]. J Eur Ceram Soc,2008, 28(10):2011.
31 Ansar S A, Bhattacharya S, Dutta S, et al. Development of mullite and spinel coatings on graphite for improved water-wettability and oxidation resistance[J]. Ceram Int,2010,36(6):1837.
32 Mukhopadhyay S. Improved sol gel spinel(MgAl2O4) coatings on graphite for application in carbon containing high alumina castables[J]. J Sol-gel Sci Technol,2010,56(1):66.
33 Mukhopadhyay S, Ansar S A, Paul D, et al. Characteristics of refractory castables containing mullite and spinel coated graphites[J]. Mater Manuf Process,2012,27(2):177.
34 Mukhopadhyay S, Paul D, Bhowmick G, et al. Mullite coatings on graphite for application in carbon containing monolithic refractory[J]. Ind Ceram,2011,31(2):129.
35 Mukhopadhyay S, Das G, Biswas I. Nanostructured cementitious sol gel coating on graphite for application in monolithic refractory composites[J]. Ceram Int,2011,38(2):1717.
36 Dutta S, Das P, Das A, et al. Significant improvement of refractoriness of Al2O3-C castables containing calcium aluminate nano-coa-tings on graphite[J]. Ceram Int,2014,40(3):4407.
37 Mukhopadhyay S, Dutta S. Comparison of solid state sol-gel derived calcium aluminate coated graphite and characterization of prepared refractory composite[J]. Ceram Int,2012,38(6):4997.
38 Mukhopadhyay S. Nanoscale calcium aluminate coated graphite for improved performance of alumina based monolithic refractory composite[J]. Mater Res Bull,2013,48(7):2583.
39 Mukhopadhyay S, Mondal C, Chakraborty A, et al. In depth stu-died on cementitiousnanocoatings on graphite for its contribution in corrosion resistance of alumina based refractory composite[J]. Ceram Int,2015, 41:11999.
40 Mukhopadhyay S, Dana K, Moitra S, et al. Thermal and thermomechanical characteristics of monolithic refractory composite matrix containing surface-modified graphite[J]. Ceram Int,2016,42:6015.
41 刘阳, 曾令可, 刘明泉. 非氧化物陶瓷及其应用[M]. 北京: 化学工业出版社,2011:1.
42 Huang J F, Deng F, Cao L Y, et al. Influence of infiltration additive on the phase, microstructure and oxidation resistance of SiC coating for graphite materials[J]. Key Eng Mater,2007,336-338:1756.
43 Aliakbarpour S, Zakeri M, Rahimipour M R, et al. Effect of SiC-mullite coatings on oxidation resistance of graphite[J]. Adv Appl Ceram,2014,113(6):358.
44 Ding J, Deng C J, Yuan W J, et al. Novel synthesis and characte-rization of silicon carbide nanowires on graphite flakes[J]. Ceram Int,2014,40(3):4001.
45 Liu X, Zhang S W. Low-temperature preparation of titanium carbide coatings on graphite flakes from molten salts[J]. J Am Ceram Soc,2008, 91(2):667.
46 Liu X, Wang Z, Zhang S W. Molten salt synthesis and characterization of titanium carbide-coated graphite flakes for refractory castable applications[J]. Int J Appl Ceram Technol,2011,8(4):911.
47 Ding J, Deng C J, Zhang X J, et al. Synthesis of titanium carbide coating on surface of graphite by molten salt media[J]. J Funct Mater, 2014,45(3):03066(in Chinese).
丁军, 邓承继, 张小军, 等. 熔盐介质中石墨表面碳化钛包覆的研究[J]. 功能材料,2014,45(3):03066.
48 Ono Y, Matsumoto T, Amemiya Y. Development of the basic mo-nolithic refractories containing hydrophilic graphite[R]. Reports of the Research Laboratory, Asahi Glass Co., Ltd,1993:35.
49 Suzuki H, Araki H, Noda T. Microstructure of SiC thin films produced on graphite by excimer-laser chemical vapor deposition[J]. J Mater Sci Lett,1994,13(13):49.
50 Watkins T R, Green D J. Fracture behavior of chemically-vapor-deposited SiC-coated graphite:Ⅰ. Experimental results[J]. J Am Ceram Soc,1993,76(12):3066.
51 Richards M R, Richards A C, Taya M, et al. Thermomechanical and chemical properties of SiC-C functionally gradient coatings on graphite[J]. J Vac Sci Technol: Vac Surf Films,1995,13(3):1196.
52 Park S J, Han J G, Boo J H. Growth of protective coating layers on graphite using single molecular precursors[C]∥ Proceedings, An-nual Technical Conference-Society of Vacuum Coaters. Chicago,1999:368.
53 金谷. 表面活性剂化学[M]. 合肥: 中国科学技术大学出版社,2008:1.
54 Wang L L, Yu J, Li Z Y. Dispersibility of graphite in water with different dispersants[J]. New Carbon Mater,2016,31(1):92(in Chinese).
王丽丽, 于锦, 李正元. 分散剂对石墨水悬浮液分散性能的影响[J]. 新型炭材料,2016,31(1):92.
55 Wang H F, Huang Y, He W, et al. Effect of nonionic surfactant on stability of graphite-H2O dispersion[J]. J Funct Mater,2009,40(1):48(in Chinese).
王恒飞, 黄芸, 何伟, 等. 非离子表面活性剂对石墨-H2O分散液稳定影响[J]. 功能材料,2009,40(1):48.
56 Oliveira I R, Salomao R, Pandolfelli V C, et al. High-carbon-content refractory castables[J]. Am Ceram Soc Bull,2003,82(10):9501.
57 Chen Y L, Zhao L, Gong S S, et al. Effect of modified graphite on properties of Al2O3-SiC- C castables for BF trough[J]. Refractories,2013, 47(5):362(in Chinese).
陈玉龙, 赵雷, 龚仕顺, 等. 改性石墨对Al2O3-SiC-C质铁沟浇注料性能的影响[J]. 耐火材料,2013,47(5):362.
58 Nonomura Y, Morita Y, Deguchi S, et al. Anomalously stable dispersions of graphite in water/acetone mixtures[J]. J Colloid Interface Sci,2010,346(1):96.
59 Moraru V, Nikolai L, Dmitriil S. Structural transitions in aqueous suspensions of nature graphite[J]. Colloids Surf,2004,242(1-3):181.
60 Paruchuri V K, Nalaskowski J. The effect of cosurfactants on so-dium dodecyl sulfate micellar structures at a graphite surface[J]. Colloids Surf, 2006,272(3):157.
61 Paruchuri V K, Nguyen A V, Miller J D. Zeta-potentials of self-assemble surface micelles of ionic surfactants adsorbed at hydrophobic graphite surfaces[J]. Colloids Surf,2004,250(1-3):519.
[1] 温强, 李向成, 花银群, 关庆丰, 蔡杰. 强流脉冲电子束表面改性技术及其在热障涂层改性中的研究进展[J]. 材料导报, 2025, 39(3): 23090070-11.
[2] 屈沅治, 张蝶, 兰雅婧, 任晗, 刘阔, 黄宏军, 梁本亮, 颜鲁婷. 水基钻井液用多元协同纳米润滑剂的研究进展[J]. 材料导报, 2025, 39(2): 23090016-6.
[3] 裴海华, 赵建伟, 郑家桢, 张贵才, 张菅, 蒋平. 改性纳米锂皂石强化高温泡沫调驱性能研究[J]. 材料导报, 2025, 39(2): 22110070-5.
[4] 陈京健, 徐能能, 芦拓, 魏群山. 锌阳极氮掺杂多孔碳表面功能层设计及可逆性研究[J]. 材料导报, 2024, 38(6): 23040217-6.
[5] 李鹏程, 魏嘉佳, 孟昊天, 王文轩, 李佳峻, 李达, 涂秋芬. 静电自组装法构建抗菌抗凝涂层的研究[J]. 材料导报, 2024, 38(14): 23020101-9.
[6] 刘筱涵, 杨培, 周晓燕. 等离子体改性增强农林生物质复合材料界面相容性研究进展[J]. 材料导报, 2024, 38(13): 23030072-11.
[7] 金磊源, 胡芳坤, 姜晓娇, 夏立, 刘冉, 徐佳乐, 涂秋芬, 熊开琴. 基于Notch信号通路抑制剂的多功能血管支架涂层制备及表征[J]. 材料导报, 2024, 38(12): 22120030-8.
[8] 杨长兴, 王固霞, 郭生伟. 油酸改性石墨相氮化碳的制备、表征及摩擦学性能研究[J]. 材料导报, 2023, 37(23): 22100019-7.
[9] 郑洋, 张璇, 卢佳, 何东磊, 宿振宇, 牛伟, 于镇洋, 孙荣禄, 李岩. 医用镁合金体内降解行为与表面改性研究进展[J]. 材料导报, 2023, 37(19): 22020134-16.
[10] 郭远来, 缪婉, 钱继东, 熊开琴, 涂秋芬. “一步法”构建基于Zn2+的抗菌表面[J]. 材料导报, 2023, 37(12): 22030058-6.
[11] 易荣, 王法衡, 刘永财, 李涤尘, 刘亚雄. 聚醚醚酮的表面改性策略综述[J]. 材料导报, 2023, 37(11): 21070057-12.
[12] 孟兆通, 张昌海, 迟庆国, 张天栋. 固体绝缘材料中空间电荷的主要影响因素及抑制方法[J]. 材料导报, 2023, 37(1): 21040316-9.
[13] 梁朝, 李茹春, 李春全, 孙志明, 陈珍明, 郑水林. 硅酸钙表面有机改性和形貌对填充PP复合材料力学性能的影响及机理[J]. 材料导报, 2022, 36(23): 21080298-8.
[14] 鲁春驰, 王影, 王东征. 涂布正极表面丝网印刷氧化锌颗粒对锂离子电池性能的影响[J]. 材料导报, 2022, 36(21): 21050056-5.
[15] 郑皓华, 邓雅洁, 吴志林. 纳米包装材料表面改性技术及包装形态表现研究[J]. 材料导报, 2022, 36(19): 21110079-5.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed