Abstract: Using the photovoltaic effect to directly convert solar energy into electricity is one of the important ways to obtain sustainable clean energy. In recent years, perovskite solar cells have become a research hotspot in the field of photovoltaics. With the continuous development of structural regulation and preparation technology, the current efficiency had exceeded 25%. Although perovskite photovoltaic devices have the advantages of mild preparation conditions, low cost, and high efficiency. However, this type of photovoltaic device exhibits a slow kinetic phenomenon on the order of seconds or even minutes, which has caused great problems for the performance of perovskite photovoltaic devices and the correct understanding of photoelectric conversion kinetics. So far, the understanding of slow dynamics is still in the guessing stage, and there is still no systematic understanding. Among them, ion migration and trap-state properties are considered as the main research targets of slow dynamics. Starting from the original charge separation of perovskite photovoltaic devices, this paper analyzes the carrier dynamics of perovskite solar cells over multiple time spans. The possible reasons for the slow dynamics of perovskite photovoltaic devices are discussed. It is believed that the key perovskite active layer can be used as the entry point to reveal the mechanism of the influence of the perovskite active layer structure on the slow kinetics. It provides new ideas for a new understanding of the photoelectric conversion process of perovskite solar cells, and further guides device design and preparation.
作者简介: 于嫚,西安航空学院讲师。2013年7月本科毕业于郑州轻工业大学,获得理学学士学位,2018年7月硕博连读毕业于中国人民大学,师从张建平、艾希成教授。主持国家自然科学基金青年基金一项(21903062),主要研究钙钛矿太阳能电池光电转换动力学及机理研究,在Physical Chemistry Chemical Physics,Chemistry A European Journal,ChemPhysChem,RSC Advance,Energy Technology,Chemical Physics Letters等期刊发表论文10余篇。
引用本文:
于嫚. 聚焦钙钛矿光伏器件中慢速动力学机制研究进展[J]. 材料导报, 2020, 34(15): 15059-15062.
YU Man. Focused on the Mechanism of Slow Dynamics in Perovskite Photovoltaic Devices. Materials Reports, 2020, 34(15): 15059-15062.
Kojima A, Teshima K, Shirai Y, et al. Journal of the American Chemical Society, 2009, 131(17), 6050.2 Peng J, Chen Y, Zheng K, et al. Chemical Society Reviews, 2017, 46(19), 5714.3 Manser J S, Christians J A, Kamat P V. Chemical Reviews, 2016, 116(21), 12956.4 Kim H S, Im S H, Park N G. Journal of Physical Chemistry C, 2014, 118(11), 5615.5 Qi X, Zhang Y, Ou Q, et al. Small, 2018, 14(31), 1800682.6 https://www.nrel.gov/pv/assets/pdfs/best-research-cell-efficiencies.20200218.7 Wang H, Whittaker-Brooks L, Fleming G R. The Journal of Physical Chemistry C, 2015, 119(34), 19590.8 Frost J M, Walsh A. Accounts of Chemical Research, 2016, 49(3), 528.9 Yang B, Dyck O, Poplawsky J, et al. Journal of the American Chemical Society, 2015, 137(29), 9210.10 Srimath Kandada A R, Petrozza A. Accounts of Chemical Research, 2016, 49(3), 536.11 Bertoluzzi L, Sanchez R S, Liu L, et al. Energy & Environmental Science, 2015, 8(3), 910.12 O'regan B C, Barnes P R, Li X, et al. Journal of the American Chemical Society, 2015, 137(15), 5087.13 Zarazua I, Han G, Boix P P, et al. Journal of Physical Chemistry Letters, 2016, 7(24), 5105.14 Almora O, Zarazua I, Mas-Marza E, et al. The Journal of Physical Che-mistry Letters, 2015, 6(9), 1645.15 Wu B, Fu K, Yantara N, et al. Advanced Energy Materials, 2015, 5(19), 1500829.16 Yu M, Wang Y, Wang H Y, et al. Chemical Physics Letters, 2016, 662(1), 257.17 Wang H Y, Wang Y, Yu M, et al. Physical Chemistry Chemical Physics, 2016, 18(17), 12128.18 Jiang J, Wang Q, Jin Z, et al. Advanced Energy Materials, 2018, 8(3), 1701757.19 Shi J, Li Y, Li Y, et al. Joule, 2018, 2(5), 879.20 Christoforo M, Hoke E, Mcgehee M, et al. Photonics, 2015, 2(4), 1101.21 Tian W, Zhao C, Leng J, et al. Journal of the American Chemical Society, 2015, 137(39), 12458.22 Huang J, Yuan Y, Shao Y, et al. Nature Reviews Materials, 2017, 2(7), 17042.23 Herz L M. Annual Review of Physical Chemistry, 2016, 67(1), 65.24 Zhu X Y, Podzorov V. The Journal of Physical Chemistry Letters, 2015, 6(23), 4758.25 Christians J A, Manser J S, Kamat P V. Journal of Physical Chemistry Letters, 2015, 6(11), 2086.26 Sanchez R S, Gonzalez-Pedro V, Lee J W, et al. The Journal of Physical Chemistry Letters, 2014, 5(13), 2357.27 Chen S, Wen X M, Sheng R, et al. ACS Applied Materials & Interfaces, 2016, 8(8), 5351.28 Shi J, Zhang H, Xu X, et al. Small, 2016, 12(38), 5288.29 Gratzel M. Accounts of Chemical Research, 2017, 50(3), 487.30 Jiang Q, Zhang L, Wang H, et al. Nature Energy, 2017, 2(1), 16177.31 Wang Y, Wang H-Y, Han J, et al. Energy Technology, 2017, 5(3), 442.32 Wang Y, Wang H Y, Yu M, et al. Chemphyschem, 2017, 18(3), 310.33 Son D Y, Kim S G, Seo J Y, et al. Journal of the American Chemical Society, 2018, 140(4), 1358.34 Adinolfi V, Peng W, Walters G, et al. Advanced Materials, 2018, 30(1), 1700764.35 Futscher M H, Lee J M, Mcgovern L, et al. Materials Horizons, 2019, 6(7), 1497.36 Zhu C, Niu X, Fu Y, et al. Nature Communication, 2019, 10(1), 815.37 Li Z, Xiao C, Yang Y, et al. Energy Environmental Science, 2017, 10(5), 1234.