Please wait a minute...
材料导报  2020, Vol. 34 Issue (15): 15059-15062    https://doi.org/10.11896/cldb.19100117
  无机非金属及其复合材料 |
聚焦钙钛矿光伏器件中慢速动力学机制研究进展
于嫚
西安航空学院材料工程学院,西安 710077
Focused on the Mechanism of Slow Dynamics in Perovskite Photovoltaic Devices
YU Man
School of Materials Engineering, Xi'an Aeronautical University, Xi'an 710077, China
下载:  全 文 ( PDF ) ( 1947KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 利用光伏效应直接将太阳能转化为电能,是获取可持续清洁能源的重要途径之一。近年来,钙钛矿太阳能电池成为光伏领域的研究热点,随着结构调控和制备工艺的不断发展,目前其光电转换效率已经突破25%。虽然钙钛矿光伏器件具有制备条件温和、成本低、效率高等优点,但该类光伏器件呈现出秒量级甚至分钟量级的慢速动力学现象,这对钙钛矿光伏器件性能以及正确认识光电转换动力学造成较大的影响。迄今对慢速动力学的认识仍处于猜测阶段,尚缺乏系统认识。其中离子迁移和缺陷态属性被当作慢速动力学的主要研究目标。本文从钙钛矿光伏器件原初的电荷分离开始,分析了钙钛矿太阳能电池在多时间跨度内的载流子动力学行为;讨论了可能造成钙钛矿光伏器件慢速动力学的原因,认为可以从关键的钙钛矿活性层切入;揭示了钙钛矿活性层结构对慢速动力学的影响机理;为全新认识钙钛矿太阳能电池光电转换过程提供新思路,从而进一步指导器件设计和制备。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
于嫚
关键词:  钙钛矿太阳能电池  光电转换动力学  载流子传输  载流子复合  慢速动力学    
Abstract: Using the photovoltaic effect to directly convert solar energy into electricity is one of the important ways to obtain sustainable clean energy. In recent years, perovskite solar cells have become a research hotspot in the field of photovoltaics. With the continuous development of structural regulation and preparation technology, the current efficiency had exceeded 25%. Although perovskite photovoltaic devices have the advantages of mild preparation conditions, low cost, and high efficiency. However, this type of photovoltaic device exhibits a slow kinetic phenomenon on the order of seconds or even minutes, which has caused great problems for the performance of perovskite photovoltaic devices and the correct understanding of photoelectric conversion kinetics. So far, the understanding of slow dynamics is still in the guessing stage, and there is still no systematic understanding. Among them, ion migration and trap-state properties are considered as the main research targets of slow dynamics. Starting from the original charge separation of perovskite photovoltaic devices, this paper analyzes the carrier dynamics of perovskite solar cells over multiple time spans. The possible reasons for the slow dynamics of perovskite photovoltaic devices are discussed. It is believed that the key perovskite active layer can be used as the entry point to reveal the mechanism of the influence of the perovskite active layer structure on the slow kinetics. It provides new ideas for a new understanding of the photoelectric conversion process of perovskite solar cells, and further guides device design and preparation.
Key words:  perovskite solar cell    photoelectric conversion dynamics    charge carrier transport    charge carrier recombination    slow dynamics
               出版日期:  2020-08-10      发布日期:  2020-07-14
ZTFLH:  TB34  
基金资助: 国家自然科学基金委青年项目(21903062)
通讯作者:  yuman@xaau.edu.cn   
作者简介:  于嫚,西安航空学院讲师。2013年7月本科毕业于郑州轻工业大学,获得理学学士学位,2018年7月硕博连读毕业于中国人民大学,师从张建平、艾希成教授。主持国家自然科学基金青年基金一项(21903062),主要研究钙钛矿太阳能电池光电转换动力学及机理研究,在Physical Chemistry Chemical Physics,Chemistry A European Journal,ChemPhysChem,RSC Advance,Energy Technology,Chemical Physics Letters等期刊发表论文10余篇。
引用本文:    
于嫚. 聚焦钙钛矿光伏器件中慢速动力学机制研究进展[J]. 材料导报, 2020, 34(15): 15059-15062.
YU Man. Focused on the Mechanism of Slow Dynamics in Perovskite Photovoltaic Devices. Materials Reports, 2020, 34(15): 15059-15062.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19100117  或          http://www.mater-rep.com/CN/Y2020/V34/I15/15059
1 Kojima A, Teshima K, Shirai Y, et al. Journal of the American Chemical Society, 2009, 131(17), 6050.2 Peng J, Chen Y, Zheng K, et al. Chemical Society Reviews, 2017, 46(19), 5714.3 Manser J S, Christians J A, Kamat P V. Chemical Reviews, 2016, 116(21), 12956.4 Kim H S, Im S H, Park N G. Journal of Physical Chemistry C, 2014, 118(11), 5615.5 Qi X, Zhang Y, Ou Q, et al. Small, 2018, 14(31), 1800682.6 https://www.nrel.gov/pv/assets/pdfs/best-research-cell-efficiencies.20200218.7 Wang H, Whittaker-Brooks L, Fleming G R. The Journal of Physical Chemistry C, 2015, 119(34), 19590.8 Frost J M, Walsh A. Accounts of Chemical Research, 2016, 49(3), 528.9 Yang B, Dyck O, Poplawsky J, et al. Journal of the American Chemical Society, 2015, 137(29), 9210.10 Srimath Kandada A R, Petrozza A. Accounts of Chemical Research, 2016, 49(3), 536.11 Bertoluzzi L, Sanchez R S, Liu L, et al. Energy & Environmental Science, 2015, 8(3), 910.12 O'regan B C, Barnes P R, Li X, et al. Journal of the American Chemical Society, 2015, 137(15), 5087.13 Zarazua I, Han G, Boix P P, et al. Journal of Physical Chemistry Letters, 2016, 7(24), 5105.14 Almora O, Zarazua I, Mas-Marza E, et al. The Journal of Physical Che-mistry Letters, 2015, 6(9), 1645.15 Wu B, Fu K, Yantara N, et al. Advanced Energy Materials, 2015, 5(19), 1500829.16 Yu M, Wang Y, Wang H Y, et al. Chemical Physics Letters, 2016, 662(1), 257.17 Wang H Y, Wang Y, Yu M, et al. Physical Chemistry Chemical Physics, 2016, 18(17), 12128.18 Jiang J, Wang Q, Jin Z, et al. Advanced Energy Materials, 2018, 8(3), 1701757.19 Shi J, Li Y, Li Y, et al. Joule, 2018, 2(5), 879.20 Christoforo M, Hoke E, Mcgehee M, et al. Photonics, 2015, 2(4), 1101.21 Tian W, Zhao C, Leng J, et al. Journal of the American Chemical Society, 2015, 137(39), 12458.22 Huang J, Yuan Y, Shao Y, et al. Nature Reviews Materials, 2017, 2(7), 17042.23 Herz L M. Annual Review of Physical Chemistry, 2016, 67(1), 65.24 Zhu X Y, Podzorov V. The Journal of Physical Chemistry Letters, 2015, 6(23), 4758.25 Christians J A, Manser J S, Kamat P V. Journal of Physical Chemistry Letters, 2015, 6(11), 2086.26 Sanchez R S, Gonzalez-Pedro V, Lee J W, et al. The Journal of Physical Chemistry Letters, 2014, 5(13), 2357.27 Chen S, Wen X M, Sheng R, et al. ACS Applied Materials & Interfaces, 2016, 8(8), 5351.28 Shi J, Zhang H, Xu X, et al. Small, 2016, 12(38), 5288.29 Gratzel M. Accounts of Chemical Research, 2017, 50(3), 487.30 Jiang Q, Zhang L, Wang H, et al. Nature Energy, 2017, 2(1), 16177.31 Wang Y, Wang H-Y, Han J, et al. Energy Technology, 2017, 5(3), 442.32 Wang Y, Wang H Y, Yu M, et al. Chemphyschem, 2017, 18(3), 310.33 Son D Y, Kim S G, Seo J Y, et al. Journal of the American Chemical Society, 2018, 140(4), 1358.34 Adinolfi V, Peng W, Walters G, et al. Advanced Materials, 2018, 30(1), 1700764.35 Futscher M H, Lee J M, Mcgovern L, et al. Materials Horizons, 2019, 6(7), 1497.36 Zhu C, Niu X, Fu Y, et al. Nature Communication, 2019, 10(1), 815.37 Li Z, Xiao C, Yang Y, et al. Energy Environmental Science, 2017, 10(5), 1234.
[1] 董丽卡, 丁明乐, 庄志山, 夏广波, 邓倩囡, 邱琳琳, 杜平凡. 柔性及纺织基钙钛矿太阳能电池的研究进展[J]. 材料导报, 2020, 34(7): 7053-7060.
[2] 彭家奕, 夏雪峰, 江奕华, 邹敏华, 王晓峰, 李璠. 无机电荷传输层在有机-无机杂化钙钛矿太阳能电池中的应用及研究进展[J]. 材料导报, 2018, 32(23): 4027-4040.
[3] 甘一升, 陈苗苗, 王玉龙, 万丽, 孔梦琴, 胡航, 王世敏. 以ZnO纳米棒阵列为电子传输层的无空穴层有机-无机杂化钙钛矿太阳能电池[J]. 材料导报, 2018, 32(23): 4047-4050.
[4] 何云龙, 沈沪江, 王炜, 袁慧慧. 柔性染料敏化太阳能电池和柔性钙钛矿太阳能电池关键电极材料研究进展[J]. 材料导报, 2018, 32(21): 3677-3688.
[5] 邹金龙, 罗玉峰, 肖宗湖, 胡云, 饶森林, 刘绍欢. 空穴传输材料在高效钙钛矿太阳能电池中的发展演变[J]. 材料导报, 2018, 32(15): 2542-2554.
[6] 陈健, 缪卫峰, 王吉林, 郑国源, 龙飞. 浅析有机金属卤化物钙钛矿太阳能电池稳定性的研究[J]. 材料导报, 2018, 32(13): 2151-2160.
[7] 李亚鹏, 李颖峰, 贺志荣, 郭从盛, 闫群民, 徐峰. 金属与半导体肖特基接触势垒模型及其载流子传输机制的研究进展[J]. 《材料导报》期刊社, 2017, 31(3): 57-62.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[9] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[10] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed