

[补充信息]

混杂纤维水泥基复合材料受压损伤本构模型及试验验证

崔涛¹,何浩祥^{1,⊠},闫维明¹,钱增志²,周大兴²

1 北京工业大学 工程抗震与结构诊治北京市重点实验室, 北京 100124;

2. 中铁建设集团有限公司, 北京 100040

[Supplementary Information]

Research on Constitutive Model of Compressive Damage of Hybrid Fiber

Reinforced Cementitious Composites (HFRCC) Under Axial Compression

and Experimental Verification

Cui Tao¹, He Haoxiang^{1, \Box}, Yan Weiming¹, Qian Zengzhi², Zhou Daxing²

1. Beijing Laboratory of Earthquake Engineering and Structure Retrofit, Beijing University of Technology, Beijing 100124;

2. China Railway Construction Group Co., Ltd., Beijing 100040

试件制作原材料及制作过程

本试验所选用的水泥为 P.O42.5 级普通硅酸盐水泥,粉煤灰为北京石电集团提供的一级粉煤灰,石 英砂为细度为 40 目的普通石英砂,减水剂为江苏苏博特新材料集团提供的聚羧酸减水剂。PVA 纤维选 用国产高强高模 PVA,纤维等效直径 40µm,长度 12mm,极限抗拉强度不低于 1200Mpa。钢纤维为端 钩型钢纤维,纤维长度 25mm,等效直径 0.4mm,极限抗拉强度不低于 1100Mpa,聚丙烯纤维为国产 聚丙烯短纤维,纤维长度 6mm,等效直径 21µm,极限抗拉强度不低于 500Mpa。

试件制作过程为:

- (1) 先按照计算好的配合比依次加入水泥、粉煤灰、石英砂。采用搅拌机干拌 2min,搅拌过程中缓 慢加入纤维,并保证添加的过程均匀,缓慢。
- (2) 干拌完成后按照配合比加入水及减水剂,在搅拌机中搅拌 5min。
- (3) 搅拌后将制得的浆体全部卸出后装入模板,在装入模板的过程尽量快速均匀
- (4) 将模板放置在振动台上振捣均匀
- (5) 将试件放置在标准养护室中养护 28d

试验设备与仪器

试件采用 YAW-1000G 型压力机进行加载,压力机最大加载力为 1000kN。为避免应力增长过快,加载全过程采用变形控制,加载速率 0.05mm/min。为保证应变测定的精确性,用位移计和电阻应变片结合来测定试件的纵向变形,位移计采取双面中心对称布置方式,运用动态应变仪采集试验数据,加载和采集装置如图 1。普通的液压式压力机在材料破坏瞬间释放出过大的变形能,导致材料瞬间破坏,

获取的应力-应变曲线只有上升段。为获得完整的应力-应变曲线,本次试验在压力机加载板上安装两个 最大荷载 50t 的千斤顶,在试件破坏瞬间消耗其突然释放的变形能,使试件不致瞬间发生破坏丧失承载 能力。

图1 加载装置

Fig.1 Loading device

试件破坏过程

与普通混凝土相比,纤维掺入后因其显著的阻裂效应,跨越裂缝和靠近裂缝尖端的纤维将应力传 递至裂缝的上下表面,裂缝尖端应力集中程度减小,裂缝开展需克服的阻力较大,破坏过程也更为缓 慢,曲线下降段更加平缓,试件韧性提高。图2为 PC2 标准化后的应力-应变全曲线,其中 f_{ef}为峰值应 力, ε_{ef}为峰值应变。本文将以该试件为例,将本次试验轴心受压破坏过程分为如下几个阶段:

(1) 弹性阶段(OA 段, σ≤0.3f_{cf})。

当试件应力*o*≤0.3*f*_{cf}时,试件的主要变形主要是由弹性变形,初始微裂缝基本没有发展,纤维的阻裂作用未得到发挥,试件的应力-应变曲线与普通混凝土相近,线性上升,加载初期曲线有少许下凹段,这是由于加载初期加载板与试件之间有少量孔隙。

(2) 裂缝稳定发展阶段(AB 段, 0.3f_{cf} < σ ≤ 0.85f_{cf})。

随着应力的增加,混凝土内部的微裂缝开始延伸和扩展,应力-应变曲线呈现非线性。试件内部开始产生微裂缝,并不断地从中部向试件表面发展,但由于纤维的阻裂作用,裂缝比较细密,此时应力-应变曲线开始出现上凸,但试件表面仍然没有明显的宏观裂缝产生。

(3)裂缝非稳定发展阶段(BC 段, 0.85f_{cf} < σ≤f_{cf})。应力-应变曲线到达 B 点时,裂缝发展已不稳定, 试件开始加速横向膨胀的过程,体积应变开始由压缩逐渐转化为膨胀。这时跨越裂缝的纤维起到桥联 阻裂作用,降低了裂缝扩展速率,由于纤维的约束作用,试件的峰值应变也有所增加。应力-应变曲线 到达 C 点时,试件内部微裂缝连通形成破坏面,试件承载力达到峰值。且试件侧面的出现了细密的竖 向裂缝

(4)下降阶段(CDEF 段)。试件达到峰值应力后迅速丧失承载能力,曲线开始突然下降,达到约80%峰值应力时(D 点),试件表面出现了一些竖向宏观细密裂缝,延侧面平行分布,此时纤维横跨裂缝,并开始对试件的横向变形产生约束作用,试件的韧性有一定提高,参见图 3(b)。随着裂缝的进一步扩展,混凝土侧面的竖向短裂缝逐渐贯通,应力-应变曲线下降至 E 点时,竖向裂缝贯通。跨裂缝的纤维有效阻止了裂缝的发展,使开裂截面相连紧密,这有效提高了截面的抗剪能力和变形能力。

Fig 1 Typical stress-strain curve

计算结果误差分析

本节将采用六中方法的计算结果与实测结果进行了误差分析,所得出的 R² 列于表 1,可以看出, 采用均值法,尤其是采用规范与基于 SIR 模型的能量法求均值的计算方法可以较好反应试件的应力-应 变关系,拟合效果最优,可在一定程度上弥补单一方法的不足,宜推广使用。

表1 试件采用各本构模型结果判定系数(R²)

Table1 Coefficient of determination (R^2) of specimen using different kinds of constitutive model (R^2)

	Statistic method	Energy method based on SIR model	Code GB50010-2010	Energy method based on Code	Mean value of Statistical and Energy method based on SIR	Mean value of Code and Energy method based on SIR model
DB	0.931	0.944	0.932	0.936	0.958	0.942
PC1	0.864	0.897	0.907	0.912	0.903	0.907
PC2	0.829	0.862	0.880	0.889	0.876	0.900
PC3	0.833	0.886	0.892	0.907	0.894	0.910
PC4	0.801	0.863	0.866	0.871	0.885	0.894
PC5	0.811	0.875	0.883	0.898	0.883	0.907
SC1	0.820	0.861	0.869	0.877	0.873	0.894
SC2	0.814	0.841	0.826	0.833	0.843	0.855
SC3	0.815	0.856	0.871	0.874	0.886	0.903
SC4	0.807	0.844	0.845	0.857	0.854	0.879

附表:表1中文版

	统计方法	基于SIR能量法	规范	基于规范的能量 法	统计与 SIR 能量 法均值	规范与 SIR 能量法 均值
DB	0.931	0.944	0.932	0.936	0.958	0.942
PC1	0.864	0.897	0.907	0.912	0.903	0.907
PC2	0.829	0.862	0.880	0.889	0.876	0.900
PC3	0.833	0.886	0.892	0.907	0.894	0.910
PC4	0.801	0.863	0.866	0.871	0.885	0.894
PC5	0.811	0.875	0.883	0.898	0.883	0.907
SC1	0.820	0.861	0.869	0.877	0.873	0.894
SC2	0.814	0.841	0.826	0.833	0.843	0.855
SC3	0.815	0.856	0.871	0.874	0.886	0.903
SC4	0.807	0.844	0.845	0.857	0.854	0.879