POLYMERS AND POLYMER MATRIX COMPOSITES |
|
|
|
|
|
Research on the Preparation of ZIF-8 Derived Nitrogen-doped Porous Carbon and Its CH4/N2 Adsorptive Separation from Low Concentration Coalbed Methane |
CHEN Yisi1, ZHANG Hongtu1, WANG Binbin2, LI Yao1,*
|
1 College of Safety Science and Engineering, Henan Polytechnic University, Jiaozuo 454003, Henan, China 2 School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454003, Henan, China |
|
|
Abstract In order to make the best use of low concentration coalbed methane (CBM), simultaneously slow down the trend of global warming, it is an imperative and challenging work to develop a porous carbon adsorbent for the realization of effective separation of CH4 from CH4/N2 mixture. Herein, N-doped porous carbon adsorbent has been successfully synthesized by using ZIF-8 as precursor and self-sacrificing template. The effects of carbonization temperature and carbonization time on the porosity structure and nitrogen content of the as-prepared carbon materials have been systematically analyzed. Combined with the testing of isothermal adsorption of CH4 and N2, the properties of carbon materials for CH4/N2 adsorptive separation have been analyzed. Under the carbonization temperature of 1 000 ℃ and the carbonization time of 1 h, the as-prepared carbon material NPC-1000-1 showed the optimal CH4 adsorption capacity of 1.52 mmol/g and CH4/N2 separation performance. Accor-ding to Henry’s law, the CH4/N2 selectivity coefficient was 3.73, while according to the ideal solution adsorption theory (IAST), the selectivity coefficient for binary gas CH4/N2 (30/70) was 4.72 under a certain pressure of 0.1 MPa, which was mainly contributed to the synergistic effect of the excellent porosity structure and desirable nitrogen content of the sample. This study provides a new approach for the preparation of porous carbon adsorbents and a theoretical support for the effective development and utilization of coalbed methane and environmental protection.
|
Published: 25 December 2024
Online: 2024-12-20
|
|
Fund:National Natural Science Foundation Youth Fund of China (42002164) and Safety Discipline “Double First-class” Construction Discipline Cultivation Project (AQ20230707). |
|
|
1 Howarth R W, Santoro R, Ingraffea A. Climatic Change, 2011, 106(4), 679. 2 El Hachem K, Kang M. Science of the Total Environment, 2022, 823, 153491. 3 Águeda M V I, Delgado D J A, Álvarez-Torrellas S, et al. Chemical Engineering Journal, 2019, 361, 1007. 4 Liu K W, Gu M, Xian X F. Modern Chemical Industry, 2007, 27(12), 15 (in Chinese). 刘克万, 辜敏, 鲜学福. 现代化工, 2007, 27(12), 15. 5 Gu M, Chen C G, Xian X F. Journal of China Coal Society, 2001, 26(3), 323 (in Chinese). 辜敏, 陈昌国, 鲜学福. 煤炭学报, 2001, 26(3), 323. 6 Wei X Q, Chen J. Low Temperature and Specialty Gases, 2002, 20(3), 1(in Chinese). 魏玺群, 陈健. 低温与特气, 2002, 20(3), 1. 7 Li R, Yang Y, Zhang Z, et al. Journal of Membrane Science, 2023, 685, 121983. 8 Chuah C Y, Lee J, Bao Y, et al. Journal of Membrane Science, 2021, 622, 119031. 9 Ma Y, He X, Tang S, et al. Journal of Environmental Chemical Engineering, 2022, 10(2), 107274. 10 Ma X, Li L, Zeng Z, et al. Chemical Engineering Journal, 2019, 363, 49. 11 Wang S, Wu P, Fu J, et al. Separation and Purification Technology, 2021, 274, 119121. 12 Gu M, Zhang B, Qi Z, et al. Separation and Purification Technology, 2015, 146, 213. 13 Dong Z, Li B, Shang H, et al. Aiche Journal, 2021, 67(9). 14 Yuan D, Zheng Y, Li Q, et al. Powder Technology, 2018, 333, 377. 15 Xie Q, Zhang X L, Liang D C, et al. Coal Science and Technology, 2021, 49(1), 100(in Chinese). 解强, 张香兰, 梁鼎成, 等. 煤炭科学技术, 2021, 49(1), 100. 16 Zhang P, Sun F, Xiang Z, et al. Energy & Environmental Science, 2014, 7(1), 442. 17 Pan Y, Xue M, Chen M, et al. Inorganic Chemistry Frontiers, 2016, 3(9), 1112. 18 Zhang L, Su Z, Jiang F, et al. Nanoscale, 2014, 6(12), 6590. 19 Aijaz A, Fujiwara N, Xu Q. Journal of the American Chemical Society, 2014, 136(19), 6790. 20 Abbasi Z, Shamsaei E, Leong S K, et al. Microporous and Mesoporous Materials, 2016, 236, 28. 21 Liu Y, Xu X, Wang M, et al. Chemical Communications (Cambridge, England), 2015, 51(60), 12020. 22 Srinivas G, Zheng G X. Chemsuschem, 2015, 8(12), 2123. 23 Matthias T K K A V, Abbasi Z. De Gruyter, 2015. 24 Bai F, Xia Y, Chen B, et al. Carbon, 2014, 79, 213. 25 Liu C, Dang Y, Zhou Y, et al. Adsorption, 2012, 18(3-4), 321. 26 Du S, Wu Y, Wang X, et al. AIChE Journal, 2020, 66, e16231. 27 Shi Q, Wang J, Shang H, et al. Separation and Purification Technology, 2020, 230, 115850. 28 Shang H, Li Y, Liu J, et al. Chinese Journal of Chemical Engineering, 2019, 27(5), 1044. 29 Yang J, Tang X, Liu J, et al. Chemical Engineering Journal, 2021, 406, 126599. 30 Zhang P, Wang J, Fan W, et al. Chemical Engineering Journal, 2019, 375, 121931. 31 Möllmer J, Lange M, Möller A, et al. Journal of Materials Chemistry, 2012, 22(20), 10274. 32 Tang R, Dai Q, Liang W, et al. Chemical Engineering Journal, 2020, 384, 123388. 33 Li Y, Xu R, Wang B, et al. Nanomaterials, 2019, 9(2), 266. 34 Wang J, Zhang P, Liu L, et al. Chemical Engineering Journal, 2018, 348, 57. 35 Silva J A C, Ferreira A, Mendes P A P, et al. Industrial & Engineering Chemistry Research, 2015, 54(24), 6390. 36 Yuan B, Wu X, Chen Y, et al. Environmental Science & Technology, 2013, 47(10), 5474. 37 Ferreira A F P, Santos J C, Plaza M G, et al. Chemical Engineering Journal, 2011, 167(1), 1. 38 Guo Y, Hu J, Liu X, et al. Chemical Engineering Journal, 2017, 327, 564. 39 Wu X, Yuan B, Bao Z, et al. Journal of Colloid and Interface Science, 2014, 430, 78. 40 Xue C L, Cheng W P, Hao W M, et al. Journal of Chemistry, 2019, 2019, 1. 41 Hu J, Sun T, Ren X, et al. Microporous and Mesoporous Materials, 2015, 204, 73. 42 Wang Q, Yu Y, Li Y, et al. Separation and Purification Technology, 2022, 283, 120206. 43 Samanta A, Zhao A, Shimizu G K H, et al. Industrial & Engineering Chemistry Research, 2012, 51(4), 1438. 44 Sun Y, Li K, Zhao J, et al. Journal of Colloid and Interface Science, 2018, 526, 174. |
|
|
|