POLYMERS AND POLYMER MATRIX COMPOSITES |
|
|
|
|
|
Advanced Progress of Atomic Oxygen Resistant Techniques on Polyimide Materials |
YUAN Lu1, XU Min1,*, LI Yi1, WANG Hu1, GAO Hengjiao1, GAO Wensheng2,*, LI Zhonghua1, HE Yanchun1
|
1 Science and Technology on Vacuum Technology and Physics Laboratory, Lanzhou Institute of Physics, China Academy of Space Technology, Lanzhou 730000, China 2 College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China |
|
|
Abstract Atomic oxygen (AO) in low earth orbit environment has high flux and strong oxidizing properties. It can erode rapidly the polyimide on the surface of the spacecraft, causes serious material failure. Researchers have explored many positive solutions to the problem of weak AO resis-tance of polyimide, and there are three main types of these technical approaches, i.e. cladding blanket, matrix modification and coating protection. Besides, the main strategies for numerical simulation technique of AO resistant effect were also summarized. It showed that combination of simulation and experiment could improve the model accuracy and the predictive ability of AO resistant effect. In this work, the advantages and disadvantages of these solutions were analyzed according to the aerospace engineering, and then we systematically summarized resistance abilities of different polyimide materials. Overall, we summed up the AO resistant techniques of polyimide materials clearly and prospected their future development tendency.
|
Published: 10 December 2024
Online: 2024-12-10
|
|
Fund:National Key R & D Program of China (2022YFB3806300), the National Natural Science Foundation of China (U1937601, 12305289), the Defense Industrial Technology Development Program (JCKY2020203B019), and the Natural Science Foundation of Gansu Pro-vince (23JRRA1363). |
|
|
1 Parkhomenko I N, Vlasukova L A, Parfimovich I D, et al. Acta Astronautica, 2023, 204, 124. 2 Li Y, Li Z H, He Y C, et al. ACS Appliled Materials & Interfaces, 2023, 15, 48810. 3 Kidena K, Endo M, Takamatsu H, et al. Metals, 2015, 5, 1957. 4 Valer J C, Roberts G, Chambers A, et al. IEEE Sensors Journal, 2013, 13, 3046. 5 Devapal D, Packirisamy S, Korulla R M, et al. Journal of Applied Polymer Science, 2010, 94, 2368. 6 Wagner S, Dai H X, Stapleton R A, et al. High Performance Polymers, 2006, 18, 399. 7 Dever J A, Miller S K, Sechkar E A, et al. High Performance Polymers, 2008, 20, 371. 8 Zhao G, Wang Q H, Hussainova I, et al. Key Engineering Materials, 2016, 674, 239. 9 Shu M, Li Z H, Man Y R, et al. Corrosion Science, 2016, 112, 418. 10 Zhao W, Li W P, Liu H C, et al. Chinese Journal of Aeronautics, 2010, 23, 268. 11 Groh K K, Banks B A, Mitchell G G, et al. NASA/TM-2013-217847, Ohio: NASA, 2013. 12 Vernigorov K B, Alent'ev A Y, Meshkov I B, et al. Inorganic Materials Applied Research, 2012, 3, 81. 13 Arjun G N, Lincy T L, Sajitha T S, et al. Materials Science Forum, 2015, 830, 699. 14 Goto A, Umeda K, Yukumatsu K, et al. CEAS Space Journal, 2021, 13, 415. 15 Shimamura H, Nakamura T. Polymer Degradation and Stability, 2009, 94, 1389. 16 Atar N, Grossman E, Gouzman I, et al. ACS Applied Materials & Interfaces, 2015, 7, 12047. 17 Hu L F, Li M S, Xu C H, et al. Surface and Coatings Technology, 2009, 203, 3338. 18 Reddy M R, Srinivasamurthy N, Agrawal B L. Surface and Coatings Technology, 1993, 58, 1. 19 Duo S W, Chang Y C, Liu T Z, et al. Physics Procedia, 2013, 50, 337. 20 Gouzman I, Grossman E, Verker R, et al. Advanced Materials, 2019, 31, 1807738. 21 Liu H. Study on photoactive silylation process of low environmental sensitivity. Master's Thesis, Harbin Institute of Technology, China, 2018(in Chinese). 刘浩. 具有低环境参数敏感性的光活化硅烷化工艺方法研究. 硕士学位论文, 哈尔滨工业大学, 2018. 22 Wang R H, Zhao R H, Zou W Y, et al. Materials Reports, 2021, 35(11), 11187(in Chinese). 王芮晗, 赵若虹, 邹宛晏, 等. 材料导报, 2021, 35(11), 11187. 23 Huang C J, Liu J, Zhao L B, et al. Composites: Part A, 2023, 168, 107459. 24 Li G H, Liu X, Liu Y, et al. In: 3rd AIAA Atmospheric Space Environments Conference. Hawaii, 2011, pp.3825. 25 Banks B A, Auer B M, Rutledge S K, et al. Mrs Proceedings, 1992, 278, 41. 26 Zhao L, Li Z H, Zheng K H. Vacuum or Cryogenics, 2011, 17(4), 187(in Chinese). 赵琳, 李中华, 郑阔海. 真空与低温, 2011, 17(4), 187. 27 Finckenor M M, Zwiener J M, Pippin G. In: National Space and Missile Materials Symposium. Colorado, 2007. 28 Watson K A, Palmieri F L and Connell J W. Macromolecules, 2002, 35, 4968. 29 Thompson C M, Smith J G, Watson K A, et al. In: 34th International Sampe Technical Conference. Maryland, 2002, NASA: CONTRACT_ GRANT: NAS1-97046. 30 Connell J W. High Performance Polymers, 2000, 12, 43. 31 Wang C B, Jiang H H, Tian D B, et al. High Performance Polymers, 2019, 31, 969. 32 Connell J W, Watson K A. High Performance Polymers, 2001, 13, 23. 33 Xiao F, Wang K, Zhan M S. Journal of Materials Science, 2012, 47, 4904. 34 Brunsvold A L, Zhang J M, Upadhyaya H P, et al. ACS Applied Mate-rials & Interfaces, 2009, 1, 187. 35 Zhang J M, Lindholm N F, Brunsvold A L, et al. ACS Applied Materials & Interfaces, 2009, 1, 653. 36 Minton T K, Wu B H, Zhang J M, et al. ACS Applied Materials & Interfaces, 2010, 2, 2515. 37 Tagawa M, Yokota K, Kishida K, et al. High Performance Polymers, 2010, 22, 213. 38 Brunsvold A L, Minton T K, Gouzman I, et al. High Performance Polymers, 2004, 16, 303. 39 Wu H, Zhang Y, Wu B H, et al. Polymers, 2020, 12, 2865. 40 Lei X F, Chen Y, Zhang H P, et al. ACS Applied Materials & Interfaces, 2013, 5, 10207. 41 Qian M, Murray V J, Wei W, et al. ACS Applied Materials & Interfaces, 2016, 8, 33982. 42 Andropova U, Serenko O, Tebeneva N, et al. Polymer Testing, 2020, 84, 106404. 43 Zhang J, Ai L, Li X, et al. Materials Chemistry and Physics, 2019, 222, 384. 44 Wang X, Zhao X H, Wang M Z, et al. Nuclear Instruments and Methods in Physics Research, 2006, 243, 320. 45 Lv M, Wang Q H, Liang Y M, et al. Composites Part B Engineering, 2015, 77, 215. 46 Xiao F, Wang K, Zhan M S. Applied Surface Science, 2010, 256, 7384. 47 Zhao Y Z, Shen Z G, Zhang X J. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 629, 127398. 48 Zhang W, Yi M, Shen Z G, et al. Journal of Material Science, 2013, 48, 2416. 49 Xu B, Chen Y H, Ru X C, et al. Acta Materiae Compositae Sinica, 2018, 35(9), 2321(in Chinese). 徐博, 陈妍慧, 茹煊赫, 等. 复合材料学报, 2018, 35(9), 2321. 50 Qin S L, Qiu S H, Wang L P, et al. High Performance Polymers, 2019, 31, 331. 51 Xie K F, Wang W J, Gao W S, et al. Composites Part B, 2022, 239, 109970. 52 Ren S M, Cui M J, Wang L P, et al. Applied Surface Science, 2019, 479, 669. 53 Baby M, Devapal D, Maniyeri S C. Surface and Coatings Technology, 2022, 448, 128886. 54 Liu Z Q, Meyers M A, Zhang Z F, et al. Progress in Materials Science, 2017, 88, 467. 55 Pan X F, Wu B, Yu S Y, et al. Advanced Materials, 2022, 34, 2105299. 56 Mao J C, Han D F, Yang X J, et al. Science Technology and Engineering, 2019, 19(28), 129. (in Chinese) 毛金成, 韩涤非, 杨小江, 等. 科学技术与工程, 2019, 19(28), 129. 57 Gotlib-Vainstein K, Gouzman I, Girshevitz O, et al. ACS Applied Mate-rials & Interfaces, 2015, 7, 3539. 58 Gouzman I, Girshevitz O, Eitan G, et al. ACS Applied Materials & Interfaces, 2010, 2, 1835. 59 Banks B A, Snyder A, Miller S K, et al. In: Sixth International Confe-rence on Protection of Materials and Structures from Space Environment. Toronto, 2004, NASA/TM-2002-211577. 60 Chambers A R, Harris I L, Roberts G T. Materials Letters, 1996, 26, 121. 61 Duo S W, Li M S, Zhang Y M, et al. Rare Metal Materials and Engineering, 2006, 35(7), 1057. (in Chinese) 多树旺, 李美栓, 张亚明, 等. 稀有金属材料与工程, 2006, 35(7), 1057. 62 Qi H, Qian Y H, Xu J J, et al. Corrosion Science, 2017, 124, 56. 63 Ritchie I, Gjerde H B. Surface and Coatings Technology, 1989, 39, 599. 64 Duo S W, Li M S, Zhou Y C. Transactions of Nonferrous Metals Society of China, 2006, 16, s661. 65 Zhang X, Wu Y Y, He S Y, et al. Materials Chemistry and Physics, 2009, 114, 179. 66 Snyder A, Groh K K. NASA/TM-2001-210596, Ohio: NASA, 2001. 67 Scialdone J J, Clatterbuck C. NASA-TM-104574, Maryland: NASA, 1992. 68 Devapal D, Packirisamy S, Ninan K N, et al. Journal of Materials Science, 2006, 41, 5764. 69 Fewell L L. Journal of Applied Polymer Science, 1990, 41, 391. 70 Wang X H, Li Y X, Sun J Q, et al. Advanced Materials, 2018, 30, 1803854. 71 Xu M, Zhao Y P, Gao W S, et al. ACS Applied Polymer Materials, 2019, 1, 3253. 72 Li Y, Li Z H, Li D T, et al. Plasma Science and Technology, 2022, 24, 065505. 73 Li Y, Li Z H, He Y C, et al. Journal of Coatings Technology and Research, 2022, 20, 623. 74 Wang J, Li W P, Chen Y C, et al. Journal of Beijing University of Aeronautics and Astronautics, 2009, 35(7), 824. (in Chinese) 王静, 李卫平, 陈贻炽, 等. 北京航空航天大学学报, 2009, 35(7), 824. 75 Yu C Y, Ju P F, Chen L, et al. Industrial and Engineering Chemistry Research, 2019, 58, 17027. 76 Tagawa M, Yokota K, Ohmae N, et al. Tribology Letters, 2004, 17, 859. 77 Duo S W, Li M S, Zhu M, et al. Materials Chemistry and Physics, 2008, 112, 1093. 78 Zhao L, Leng X S, Li J, et al. Coatings, 2023, 13, 153. 79 Banks B A, Demko R. NASA/TM-2002-211360, Ohio: NASA, 2002. 80 Wang Q, Liang J F, Zhang R H, et al. Chinese Physics B, 2013, 22, 519. 81 Guo S Y, Yuan L, Liu X H, et al. Chemical Physics Letters, 2017, 686, 83. 82 Zhang H J, Ren S M, Xue Q J, et al. Applied Surface Science, 2018, 444, 28. 83 Gao H J, Xiong Y Q, Zhang K F, et al. Journal of Renewable Materials, 2022, 11, 1715. 84 Rahmani F, Nouranian S, Li X B, et al. ACS Applied Materials & Interfaces, 2017, 9, 12802. 85 Rahnamoun A, van Duin A C T. The Journal of Physical Chemistry A, 2014, 118, 2780. 86 Zeng F L, Peng C, Liu Y Z, et al. The Journal of Physical Chemistry A, 2015, 119, 8359. 87 Li G H, Liu X, Li T. Composites: Part B, 2013, 44, 60. 88 Liu Y, Li G H. Acta Astronautica, 2010, 67, 388. 89 Liu Y, Liu X, Li G H, et al. Applied Surface Science, 2010, 256, 6096. 90 Yang X, Zhang K F, Ye X Y, et al. Materials Today Communications, 2021, 28, 102638. 91 Yang X, Zhang K F, Ye X Y, et al. Materials Today Communications, 2023, 35, 106091. 92 Rao Z Y, Xie R W, Raabe D, et al. Science, 2022, 378, 78. 93 Wahl C B, Aykol M, Swisher J H, et al. Science Advances, 2021, 7, 1. |
|
|
|