INORGANIC MATERIALS AND CERAMIC MATRIX COMPOSITES |
|
|
|
|
|
Performance of CuSiO3-based Materials with Honeycomb Mesoporous Structure in Thermocatalytic Decomposition of NO |
HUANG Lingyu1,2,LIAO Jifei1,2, ZHANG Qian2,*, FU Yan1,2, XIAO Wenyan1,2, ZHU Jie1,2, YANG Shubin1,2
|
1 State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, University of Southwest Petroleum University, Chengdu 610500, China 2 The Center of New Energy Materials and Technology, School of New Energy and Materials, University of Southwest Petroleum University, Chengdu 610500, China |
|
|
Abstract Thermocatalytic decomposition of NO has the advantages of zero pollution, economic cost-effectiveness and so on. It has become crucial for current research of NO thermocatalytic decomposition to develop catalysts which still maintain high activities within medium-low temperature range. Using tetraethyl orthosilicate as the silicon source, this work prepared SiO2 with special mesoporous structure by adjusting the template ratio, and further hydrothermally synthesized CuSiO3 with honeycomb mesoporous structure. Experimental results showed that by adjusting the template molar ratio (CTAB/triethylamine) to 1∶0.1, the highest catalytic activity of the produced CuSiO3 for NO decomposition could be achieved owing to its special honeycomb mesoporous structure. The dosage of Co into the most active CuSiO3 raised its NO thermocatalytic decomposition efficiency at 500 ℃ to over 90% which could maintain above 80% after 4 h usage. Compare to undoped CuSiO3, the presence of Co changed the crystallinity of the catalyst, resulting in more exposed active sites and improved reducibility.
|
Published: 10 October 2024
Online: 2024-10-23
|
|
Fund:Marjor Science and Technology Project of Sichuan Province (20222DZX0042). |
|
|
1 Anonymity. Road Traffic Management, 2023(1), 5(in Chinese). 佚名. 道路交通管理, 2023(1), 5. 2 Liu B. Environmental Science & Technology, 2001(4), 6 (in Chinese). 刘彬. 环境科学与技术, 2001(4), 6. 3 Wang T, Xue L, Brimblecombe P, et al. Science of the Total Environment, 2017, 575, 1582. 4 Wang X. Technology & Market, 2022, 29(9), 3 (in Chinese). 王新. 技术与市场, 2022, 29(9), 3. 5 Yu J J, Xiao P W, Yan X T, et al. Industrial & Engineering Chemistry Research, 2007, 46(17), 5794. 6 Beeckman J W, Hegedus L L. Industrial & Engineering Chemistry Research, 1991, 30(5), 969. 7 Ishihara T, Ando M, Sada K, et al. Journal of Catalysis, 2003, 200(1), 104. 8 Wise H, Frech M F. Journal of Chemical Physics, 1952, 20(1), 22. 9 Xie P, Ji W, Li Y, et al. Catalysis Science & Technology, 2021, 11(2), 374. 10 Shen Q, Dong S, Li S, et al. Catalysts, 2021, 11(5), 622. 11 Wan J Y, Yu L. Chemical Research and Application, 1999, 11(1), 5 (in Chinese). 万家义, 余林. 化学研究与应用, 1999, 11(1), 5. 12 Salem B, Katabathini N. Scientific Reports, 2020, 10(1), 518. 13 Cao S D, Hoang A N, Viet H L. Indian Academy of Sciences, 2022, 134, 122. 14 Bian Z F, Sibudjing K. Catalysis Today, 2020, 339, 3. 15 Pu Y Y. Preparation and application of chiral mesoporous silicas. Master's Thesis, Soochow University, China, 2011 (in Chinese). 蒲云月. 手性介孔二氧化硅的制备及应用. 苏州, 硕士学位论文, 苏州大学, 2011. 16 Zhang X D, Hou F L, Li H X, et al. Microporous and Mesoporous Materials, 2018, 259, 211. 17 Yue X, Xiang J H, Chen J Y, et al. Journal of Materials Science & Technology, 2022, 47, 223. 18 Katabathini N, Islam H A E M, Mohamed M. Applied Catalysis A:General, 2021, 616, 118100. 19 Vortmann S, Rius J, Siegmann S, et al. The Journal of Physical Chemistry B, 1997, 101(8), 1292. 20 Sing S W K, Everett D H, Hual R A W, et al. Pure & Applied Chemistry, 1985, 57(4), 603. 21 Huang X M, Ma M, Miao S, et al. Applied Catalysis A: General, 2016, 531, 79. 22 Costa P D, Moden B, Meitzner G D, et al. Physical Chemistry Chemical Physics, 2002, 4, 4590. 23 Iwamoto M, Yahiro H, Tanda K, et al. Journal of Physical Chemistry, 1991, 95(34), 3727. 24 Park S K, Kurshev V, Luan Z, et al. Microporous & Mesoporous Materials, 2000, 38(2-3), 255. 25 Torre-Abreu C, Ribeiro M F, Henriques C, et al. Applied Catalysis B: Environmental, 1997, 13(3-4), 251. 26 Qin X, Yin D J, Yu L Z, et al. China Environmental Science, 2020, 40(2), 591 (in Chinese). 秦萱, 尹德嘉, 余丽泽, 等. 中国环境科学, 2020, 40(2), 591. 27 Batsile M M, Phendukani N, Ndzondelelo B. Applied Catalysis B: Environmental, 2017, 218, 240. 28 Carla G M, Miguel A P, Jorge E S. Molecular Catalysis, 2020, 481, 110223. 29 Fang S, Takagaki A, Watanabe M, et al. Catalysis Science & Technology, 2020, 10, 2513. 30 Meng Z, Wang C, Wang X, et al. Royal Society of Chemistry Advance, 2020, 10, 8207. 31 Zhang Y, Wang L, Li J, et al. Chinese Journal of Catalysis, 2016, 37, 1918. 32 Shelef M. Catalysis Letters, 1992, 15, 305. |
|
|
|