INORGANIC MATERIALS AND CERAMIC MATRIX COMPOSITES |
|
|
|
|
|
Research Progress of Thermosensitive Carbon Dots as Temperature Sensing Materials |
GUO Dingmeng1, LI Xiaoyu1, SUN Tianyi1, LIAN Hailan1,2,*
|
1 College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China 2 Jiangsu Co-Innovation Centre of Efficient Processing and Utilization of Forest Products, Nanjing Forestry University, Nanjing 210037, China |
|
|
Abstract High sensitivity non-contact temperature sensor has been widely used in biological analysis of living cells and living bodies, aerodynamics research, photoelectric functional system research and temperature monitoring of food and cargo packaging coatings. Fluorescent proteins, organic compounds, carbon dots, metal nanoparticles, rare earth doped nanoparticles and semiconductor quantum dots have been proved to be applied to temperature sensors. Among them, carbon dots have the advantages of good water solubility, high light stability, high biocompatibility, low biological toxicity, simple preparation methods, rich sources of raw materials, etc. They can overcome the shortcomings of traditional metal quantum dots, such as easy quenching, easy agglomeration and harmful to the environment, and gradually become the substitute of other temperature sensors. In this paper, the preparation methods, performance and application fields of thermosensitive carbon dots are reviewed, the fluorescence variation law and the linear relationship between temperature and fluorescence are reviewed, and the existing problems and future development trend are analyzed and summarized, providing theoretical support for the follow-up researchers to think and learn.
|
Published:
Online: 2024-10-12
|
|
Fund:This work was financially supported by National Natural Science Foundation of China(32071703), Natural Science Foundation of Jiangsu Province(BK20221335). |
|
|
1 Li Y L, Guo J, Song J, et al. Imaging Science and Photochemistry, 2019, 37(1), 46 (in Chinese). 李亚丽, 郭靖, 宋娟, 等. 影像科学与光化学, 2019, 37(1), 46. 2 Zhang Y, Liu B, Liu Z, et al. New Journal of Chemistry, 2022, 46(43), 2515. 3 An H L, Yu T T. Tianjin Chemical Industry, 2019, 33(5), 1 (in Chinese). 安宏乐, 于婷婷. 天津化工, 2019, 33(5), 1. 4 Sun Y P, Zhou B, Lin Y, et al. Journal of the American Chemical Society, 2006, 128(24), 7756. 5 Cao L, Wang X, Meziani M J, et al. Journal of the American Chemical Society, 2007, 129(37), 11318. 6 Bo C H, Jiang W J, Wang Y G, et al. Chinese Journal of Applied Chemistry, 2021, 38(7), 767 (in Chinese). 薄纯辉, 姜维佳, 王玉高, 等. 应用化学, 2021, 38(7), 767. 7 Yu J, Song N, Zhang Y K, et al. Sensors and Actuators B, Chemical, 2015, 214, 29. 8 LeCroy G E, Sonkar S K, Yang F, et al. ACS Nano. American Chemical Society, 2014, 8(5), 4522. 9 Zhao L, Zhang M, Mujumdar A S, et al. Critical Reviews in Food Science and Nutrition, DOI:10. 1080/10408398. 2022. 2039896. 10 Xu Q, Xiao F, Xu H. Critical Reviews in Food Science and Nutrition, DOI:10. 1080/10408398. 2023. 2208209. 11 Wang C, Li P, Ding J, et al. Grain Science and Technology and Economy, 2021, 46(4), 89 (in Chinese). 王超, 李彭, 丁俭, 等. 粮食科技与经济, 2021, 46(4), 89. 12 Cheng C, Shi Y, Li M, et al. Materials Science and Engineering:C, 2017, 79, 473. 13 Ci Q, Wang Y, Wu B, et al. Advanced Science, 2023, 10(7), e2206271. 14 Mehra S, Khandare S D, Singh K, et al. Materials Today Chemistry, 2023, 29, 101437. 15 Meng Y, Guo Q, Xu H, et al. Talanta (Oxford), 2023, 254, 124180. 16 Dučić T, Alves C S, Vuinić , et al. Journal of Colloid and Interface Science, 2022, 623, 226. 17 Qi J, Zhang R, Liu X, et al. ACS Applied Nano Materials, 2023, 6(11), 9071. 18 Wu S, Shi J, Chen X, et al. Colloids and Surfaces B:Biointerfaces, 2023, 227, 113346. 19 Wang Y K, Gao X, Zhang X, et al. Journal of Shenyang Pharmaceutical University, 2022, 39(7), 876 (in Chinese). 王玉珂, 高旭, 张雪, 等. 沈阳药科大学学报, 2022, 39(7), 876. 20 Zhao Y, Xu L, Wang X, et al. Nano Today, 2022, 43, 101428. 21 Xu D, Huang Y, Ma Q, et al. Chemical Engineering Journal, 2023, 456, 141104. 22 Sbacchi M, Mamone M, Morbiato L, et al. ChemCatChem, 2023, e202300667. 23 Hou Q, Xing B, Guo H, et al. New Journal of Chemistry, 2022, 46(36), 17102. 24 Xu B, Li J, Zhang J, et al. Advanced Science, 2023, 10(4), e2205788. 25 Wang R, Li S, Huang H, et al. Journal of Fluorescence, 2023, 33(4), 1305. 26 John V L, Fasila P M, Chaithra K P, et al. Nanotechnology, 2022, 33, 495706. 27 Xu J, Zhang Y, Guo X, et al. Journal of Luminescence, 2023, 256, 119625. 28 Wang C, Xu Z, Cheng H, et al. Carbon, 2015, 82, 87. 29 Yang Y, Kong W, Li H, et al. ACS Applied Material Interfaces, 2015, 7(49), 27324. 30 Xiang J, Li R, Long X, et al. ACS Omega, 2022, 7(34), 29952. 31 Fan J, Kang L, Liu D, et al. ChemistrySelect, 2023, 8(19), e202300062. 32 Bozkurt E. ChemistrySelect, 2022, 7(47), e202203777. 33 Qi H, Liu C, Jing J, et al. Dyes and Pigments, 2022, 206, 110555. 34 Xu Q, Li J, Gong X. Analytical Methods, 2022, 14(36), 3562. 35 Unsworth T. Proceedings of the Institution of Mechanical Engineers, 2008, 222(7), 3272. 36 Zhang P C. Manufacture & Upgrading Today, 2021(3), 26 (in Chinese). 张鹏程. 今日制造与升级, 2021(3), 26. 37 Wang Z P, Xu J, Liu Y K. Hot Work Processes, 2021, 50(22), 6(in Chinese). 王志平, 许婧, 刘延宽. 热加工工艺, 2021, 50(22), 6. 38 Mohammed L J, Omer K M. Nanoscale Research Letters, 2020, 15(1), 182. 39 Yan F, Wang X, Wang Y, et al. Mikrochimica Acta, 2022, 189(10), 379. 40 Meng Y, Guo Q, Jiao Y, et al. Materials Today Chemistry, 2022, 26, 101170. 41 Kühni M, Morin C, Guibert P. Applied Physics B:Lasers and Optics, 2011, 102(3), 659. 42 Okabe K, Sakaguchi R, Shi B, et al. Pflugers Archiv, 2018, 470(5), 717. 43 Khan W U, Qin L, Alam A, et al. ACS Applied Bio Materials, 2021, 4(7), 5786. 44 Yan H, Ni H, Yang Y, et al. Chinese Chemical Letters, 2020, 31(7), 1792. 45 Wang C, Lin H, Xu Z, et al. ACS Applied Materials Interfaces, 2016, 8(10), 6621. 46 Li Y, Xiao X, Wei Z, et al. Zeitschrift für Anorganische und Allgemeine Chemie (1950), 2022, 648(9), e202100323. 47 He Y, He J, Zhang H, et al. Journal of Colloid and Interface Science, 2017, 496, 8. 48 Sun T, Zhang Y, Yan R, et al. Particle & Particle Systems Characterization, 2021, 38(3), 200. 49 Plakhotnik T, Gruber D. Physical Chemistry Chemical Physics, 2010, 12(33), 9751. 50 Zhao Z J, Liang T, Wang K, et al. Transducer and Microsystem Technologies, 2022, 41(12), 67 (in Chinese). 赵珠杰, 梁庭, 王凯, 等. 传感器与微系统, 2022, 41(12), 67. 51 Wang N. Preparation and analytical application of fluorescent probe on novel graphene quantum dots. Master’s Thesis, Jiangnan University, China, 2022 (in Chinese). 王娜. 新型石墨烯量子点荧光探针的制备及分析应用. 硕士学位论文, 江南大学, 2022. 52 Liao X, Chen C, Zhou R, et al. Dyes and Pigments, 2020, 183, 108725. 53 Zhang L, Lyu S, Zhang Q, et al. Industrial Crops and Products, 2020, 145, 112066. 54 Sun L, Mo Z, Li Q, et al. International Journal of Biological Macromolecules, 2021, 175, 516. 55 Zhang Z, Liu Y, Yan Z, et al. Sensors and Actuators B:Chemical, 2018, 255, 986. 56 Kalytchuk S, Polakova K, Wang Y, et al. ACS Nano, 2017, 11(2), 1432. 57 Zhang J, Nan D, Pan S, et al. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy, 2019, 221, 117161. 58 Zhang H, You J, Wang J, et al. Dyes and Pigments, 2020, 173, 107950. 59 Guo Z, Luo J, Zhu Z, et al. Dyes and Pigments, 2020, 173, 107952. 60 Mohammed L J, Omer K M. Scientific Reports, 2020, 10(1), 3028. 61 Yang H, Long Y, Li H, et al. Journal of Colloid and Interface Science, 2018, 516, 192. 62 Song Z, Quan F, Xu Y, et al. Carbon (New York), 2016, 104, 169. 63 Cui X, Wang Y, Liu J, et al. Sensors and Actuators B, Chemical, 2017, 242, 1272. 64 Liu G, Li S, Cheng M, et al. New Journal of Chemistry, 2018, 42(15), 13147. 65 Yin Q, Wang M, Fang D, et al. RSC Advances, 2021, 11(27), 16805. 66 He W, Huo Z, Sun X, et al. Microchemical Journal, 2020, 153, 104528. 67 Li C, Qin Z, Wang M, et al. Analytica Chimica Acta, 2020, 1104, 125. 68 Wang C, Zhou J, Ran G, et al. Journal of Materials Chemistry C, 2017, 5(2), 434. 69 Tang Y, Zhou X, Xu K, et al. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy, 2020, 240, 118626. 70 Zhao D, Ma W, Wang R, et al. Polymers (Basel), 2019, 11(7), 1. 71 Shi W, Guo F, Han M, et al. Journal of Materials Chemistry B, 2017, 5(18), 3293. 72 Mu Z, Hua J, Yang Y. Spectrochimica Acta Part A, 2020, 224, 117444. 73 Nguyen V, Yan L, Xu H, et al. Applied Surface Science, 2018, 427, 1118. 74 Macairan J, Jaunky D B, Piekny A, et al. Nanoscale Advances, 2019, 1(1), 105. 75 Huang Y, Lian C, Zhou J, et al. Wuli Huaxue Xuebao/Acta Physico-Chimica Sinica, 2019, 35(11), 1267 (in Chinese). 黄彦捷, 连超, 周瑾艳, 等. 物理化学学报, 2019, 35(11), 1267. 76 Liu B, Yang K, Wei X H, et al. Chinese Medical Equipment, 2021, 42(9), 88 (in Chinese). 刘博, 杨焜, 魏晓慧, 等. 医疗卫生装备, 2021, 42(9), 88. 77 Wang N, Shi J, Zhang M T, et al. Chemical Research and Application, 2020, 32(10), 1772 (in Chinese). 王宁, 石璟, 张梦婷, 等. 化学研究与应用, 2020, 32(10), 1772. 78 Liu H, Yang Y F, Cao K Y, et al. Acta Polymerica Sinica, 2021, 52(7), 741 (in Chinese). 刘慧, 杨逸霏, 曹凯元, 等. 高分子学报, 2021, 52(7), 741. 79 Meng T H, Li C R, Wang H, et al. Journal of Instrumental Analysis, 2019, 38(8), 953 (in Chinese). 孟铁宏, 李春荣, 王恒, 等. 分析测试学报, 2019, 38(8), 953. 80 Yu H, Li X, Zeng X, et al. Chemical Communications (Cambridge, England), 2020, 56(38), 5194. 81 Astafiev A A, Shakhov A M, Vasin A A, et al. JETP Letters, 2019, 110(7), 464. 82 Isnaeni, Hanna M Y, Pambudi A A, et al. AIP Conference Proceedings, 2017, 1801(1), 1. 83 Xu K J. Journal of EEE, 2016, 38(4), 70 (in Chinese). 徐科军. 电气电子教学学报, 2016, 38(4), 70. 84 Zhang G J, Huang J Q, Li X S, et al. Chinese Journal of Scientific Instrument, 1997(2), 8 (in Chinese). 张广军, 黄俊钦, 李行善, 等. 仪器仪表学报, 1997(2), 8. 85 Wang F. Electronic World, 2013(12), 94 (in Chinese). 王芬. 电子世界, 2013(12), 94. 86 Wang X F, Li Y D, Li X, et al. Analysis and Testing Technology and Instruments, 2015(2), 124 (in Chinese). 江小峰, 李亚东, 李欣, 等. 分析测试技术与仪器, 2015(2), 124. 87 Lei B, Li W, Zhang H, et al. Royal Society of Chemistry, 2015, 5(18), 89238. 88 Zhou L, Liao B, Yang S, et al. Journal of Nanoparticle Research, 2022, 24(7), 1 89 Wang C X, Huang Y J, Lin H H, et al. Royal Society of Chemistry, 2015(5), 61586. |
|
|
|