METALS AND METAL MATRIX COMPOSITES |
|
|
|
|
|
Numerical Simulation Study of Residual Stress in AlN/Cu Brazed Joints |
LYU Chuanyang1, LI Keqiao1, SHENG Jianxiang2, GU Xiaolong3, SHI Lei4, YANG Jianguo1, HE Yanming1,*
|
1 Institute of Process Equipment and Control Engineering, College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310014, China 2 Zhejiang Jinshun Intelligent Equipment Co., Ltd., Jinhua 321000,Zhejiang, China 3 Zhejiang Province Key Laboratory of Soldering & Brazing Materials and Technology, Hangzhou 310030, China 4 Zhejiang YaTong Materials Co., Ltd., Hangzhou 310030, China |
|
|
Abstract Aluminum Nitride (AlN) ceramics have been considered as the promising material for packaging high-voltage and high-power insulated gate bipolar transistor (IGBT), where copper (Cu) coating is covered on the AlN ceramic to enhance the heat dissipation. However, the wide discrepancies in physical properties between AlN and Cu often enable severe residual stress after brazing. To address this issue, this study utilizes finite element numerical simulations to investigate the effects of loading, cooling rate, and filler alloy thickness on the residual stress in AlN/Cu brazed joints. The results show that the maximum axial stress in the AlN/Cu brazed joint appears on the AlN ceramic edge adjacent to the brazing filler alloy, while the maximum shear stress is on the interface between the AlN ceramic and brazing filler alloy, where is near the outer edge. Both the maximum axial and shear stresses increase with the decrease in loading, and the increase in cooling rate and filler alloy thickness. The stress distribution remains relatively consistent for all investigated conditions. The obtained results can provide the theoretical guidance for the high-reliability packaging of Cu-coated AlN ceramic substrates in high-power IGBTs.
|
Published: 25 August 2024
Online: 2024-09-10
|
|
Fund:Key R & D Project in Zhejiang Province (2021C01178), China National Research Project on Magnetic Confinement Fusion Energy Development (2019YFE03100400), National Natural Science Foundation of China(52175368, 52105162, 52005445), Natural Science Foundation of Zhejiang Province(LQ21E050015). |
|
|
1 Liu G Y, Wang Y G, Luo H H, et al. Electric Power, 2020, 53(12), 55 (in Chinese). 刘国友, 王彦刚, 罗海辉, 等. 中国电力, 2020, 53(12), 55. 2 Pirondi A, Nicoletto G, Cova P, et al. Microelectronics Reliability, 2000, 40(7), 1163. 3 Xu D, Lu H, Huang L, et al. IEEE Transactions on Industry Applications, 2002, 38(5), 1426. 4 Zhang Y, Wang W M, Zhang Y. Electronic Components and Materials, 2021, 40(11), 1151 (in Chinese). 张阳, 王维民, 张杨. 电子元件与材料, 2021, 40(11), 1151. 5 Wang R, Luo J, Yao E X, et al. Semiconductor Technology, 2021, 46(11), 887 (in Chinese). 王蕤, 骆健, 姚二现, 等. 半导体技术, 2021, 46(11), 887. 6 Wang L L, Ma B Y, Liu C M, et al. Refractories, 2022, 56(2), 180 (in Chinese). 王露露, 马北越, 刘春明, 等. 耐火材料, 2022, 56(2), 180. 7 Slack G A, Tanzilli R A, Pohl R O, et al. Journal of Physics and Chemistry of Solids, 1987, 48(7), 641. 8 Belyakov A V, Kuznetsova I G, Kuftyrev R Y, et al. Glass and Ceramics, 2012, 69(7-8), 270. 9 Wang H R, Li Y L, Li Z L, et al. Transactions of the China Welding Institution, 2022, 43(1), 7 (in Chinese). 王浩然, 李源梁, 李卓霖, 等. 焊接学报, 2022, 43(1), 7. 10 Schulz-Harder J. Microelectronics Reliability, 2003, 43(3), 359. 11 Dong G, Lei G T, Chen X, et al. Soldering & Surface Mount Technology, 2009, 21(3), 10. 12 Dang J J, Hu Z S, Guo J, et al. Vacuum Electronics, 2019(3), 59 (in Chinese). 党军杰, 胡竹松, 郭军, 等. 真空电子技术, 2019(3), 59. 13 He D P, Gao H, Zhang J J, et al. Journal of Inorganic Materials, 2019, 34(9), 947 (in Chinese). 何端鹏, 高鸿, 张静静, 等. 无机材料学报, 2019, 34(9), 947. 14 Ong F S, Tobe H, Sato E. Materials Science and Engineering:A, 2019, 762, 138096. 15 Niu G B, Wang D P, Yang Z W, et al. Ceramics International, 2017, 43(1), 439. 16 Goetz M, Kuhn N, Lehmeier B, et al. PCIM Europe Conference Proceeding. Nuremberg, Germany, 2013, pp.14. 17 Deng Y, Zhang Y M, Zhou Y F. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(1), 147 (in Chinese). 邓亚, 张宇民, 周玉锋. 力学学报, 2022, 54(1), 147. 18 Liu D, Liu J H, Zhou Y H, et al. Journal of Materials Engineering, 2018, 46(3), 61 (in Chinese). 刘多, 刘景和, 周英豪, 等. 材料工程, 2018, 46(3), 61. 19 Zhou W L. Research on active brazing process and stress simulation of MgAl2O4 transparent ceramic/Kovar alloy. Master’s Thesis, Harbin Institute of Technology, China, 2020 (in Chinese). 周雯露. MgAl2O4透明陶瓷/Kovar合金活性钎焊工艺研究及应力模拟. 硕士学位论文, 哈尔滨工业大学, 2020. 20 Wang T P. Ag-Cu-Ti+TiNp brazing Si3N4 ceramic/42CrMo steel microstructure and numerical simulation. Master’s Thesis, Harbin Institute of Technology, China, 2012 (in Chinese). 王天鹏. Ag-Cu-Ti+TiNp钎焊Si3N4陶瓷/42CrMo钢组织性能和数值模拟研究. 硕士学位论文, 哈尔滨工业大学, 2012. 21 Li Y F, Yang J G, Ji S D, et al. Transactions of the China Welding Institution, 2011, 32(8), 109 (in Chinese). 李雅范, 杨建国, 姬书得, 等. 焊接学报, 2011, 32(8), 109. 22 Li J P, Tong J, He N F, et al. Hot Working Technology, 2018, 47(13), 206 (in Chinese). 李健平, 童杰, 何宁发, 等. 热加工工艺, 2018, 47(13), 206. 23 Xia C H. Finite element analysis of brazing residual stress of stainless steel core plate. Master’s Thesis, Hunan University, China, 2019 (in Chinese). 夏传虎. 不锈钢芯板钎焊残余应力的有限元分析. 硕士学位论文, 湖南大学, 2019. 24 Zhang S, Yang H, Gao K, et al. Microelectronics Reliability, 2019, 98, 49. 25 Liu X, Zhang X Y, Lu Y J, et al. Vacuum Electronics, 2007, 20(4), 56 (in Chinese). 刘鑫, 张小勇, 陆艳杰, 等. 真空电子技术, 2007, 20(4), 56. 26 Terasaki N, Ohashi T, Nagatomo Y, et al. Journal of Materials Science:Materials in Electronics, 2019, 30, 6552. 27 Kim J, Kang S. Journal of Alloys and Compounds, 2012, 528, 20. 28 Wang T, Ivas T, Lee W, et al. Ceramics International, 2016, 42(6), 7080. |
|
|
|