POLYMERS AND POLYMER MATRIX COMPOSITES |
|
|
|
|
|
Research Progress on Polymer Functional Microspheres Preparation Through Fiber Core Based Hydrodynamic Method |
YANG Haochuan1,2, TAO Guangming3, CHEN Dong2,4, DONG Wenkun2,4, LING Shisheng2,4, QIAO Xusheng1,2,*, FAN Xianping1,2
|
1 School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China 2 Zhejiang University-Anxu Biological Joint R & D Center, Hangzhou 310011, China 3 Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China 4 Hangzhou Anxu Biotechnology Co., Ltd., Hangzhou 310011, China |
|
|
Abstract Polymer composite microspheres have important applications in the fields of medicine, sensing, optics and display, especially in clinical diagnosis, pathological imaging and drug delivery in the field of medicine. However, due to the complex synthesis route and low processing efficiency, conventional technologies are often difficult to take into account the good particle size dispersion, low production cost and high yield of microspheres. In recent years, based on Plateau-Rayleigh fluid interface instability (PRI) in fibers, laminar hydrodynamic methods can prepare highly monodisperse polymer microspheres at micro or nano scale with controllable cost and considerable yield. In this paper, the principle of fluid interface instability, the preparation process of fiber core layer PRI method, the preparation of functional microspheres and structural microspheres of fiber core layer PRI method and the improvement of fiber core layer PRI method are reviewed.
|
Published: 10 August 2024
Online: 2024-08-29
|
|
Fund:Zhejiang Provincial Department of Science and Technology ‘Leading Goose’ Research and Development Project (2022C01142). |
|
|
1 Du M H. Design, fabrication, properties and application of multi-material optical fiber. Ph. D. Thesis, South China University of Technology, China, 2020 (in Chinese). 杜明辉. 多材料光纤的设计, 制备, 性能及应用研究. 博士学位论文, 华南理工大学, 2020. 2 Ray P C. Chemical Reviews, 2010, 110, 5332. 3 Dumanli A G, Savin T. Chemical Society Reviews, 2016, 45, 6698. 4 Park C J, Lee T, Xia Y, et al. Advanced Materials, 2014, 26, 4633. 5 Song J, Zhang W, Wang D, et al. Advanced Materials, 2021, 33, 2007154. 6 Derveaux S, Stubbe B G, Braeckmans K, et al. Analytical and Bioanalytical Chemistry, 2008, 391, 2453. 7 Zhang Y, Sun Y, Xu X, et al. Journal of Medicinal Chemistry, 2010, 53, 3262. 8 Bhavsar M D, Amiji M M. Expert Opinion on Drug Delivery, 2007, 4, 197. 9 Cao G, Wang Y. Properties and Applications, 2004, 2, 94. 10 Vollath D. Environmental Engineering and Management Journal, 2008, 7, 865. 11 Kaufman J J, Tao G, Shabahang S, et al. Nature, 2012, 487, 463. 12 Du M, Ye S, Tang J, et al. ACS Nano, 2018, 12, 11130. 13 Daly A C, Riley L, Segura T, et al. Nature Reviews Materials, 2020, 5, 20. 14 Utada A S, Lorenceau E, Link D R, et al. Science, 2005, 308, 537. 15 Xu B, Ma S, Xiang Y, et al. Advanced Fiber Materials, 2020, 2, 1. 16 Liu H, Wang Z, Gao L, et al. Physical review letters, 2021, 127(24), 244502. 17 Rayleigh L. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1892, 34, 145. 18 Kinoshita C M, Teng H, Masutani S M. International Journal of Multiphase Flow, 1994, 20, 523. 19 Tomotika S. Proceedings of the Royal Society of London. Series A-Mathematical and Physical Sciences, 1935, 150, 322. 20 Da Silva L W, Kaviany M. International Journal of Heat and Mass Transfer, 2004, 47, 2417. 21 Eggers J, Villermaux E. Reports on Progress in Physics, 2008, 71, 036601. 22 Kaufman J J, Ottman R, Tao G, et al. Proceedings of the National Academy of Sciences, 2013, 110, 15549. 23 Monier M, Ayad D M, Wei Y, et al. Journal of Hazardous Materials, 2010, 177, 962. 24 Swayampakula K, Boddu V M, Nadavala S K, et al. Journal of Hazardous Materials, 2009, 170, 680. 25 Smith S R. Environment International, 2009, 35, 142. 26 Srivastava N K, Majumder C B. Journal of Hazardous Materials, 2008, 151, 1. 27 Kaufman J. Multifunctional, multimaterial particle fabrication via an in-fiber fluid instability. Ph. D. Thesis, University of Central Florida, USA, 2014. 28 Kaufman J J, Tan F, Ottman R, et al. In:Australian Conference on Optical Fibre Technology. Sydney, 2016, pp. AW3C. 2. 29 Bradford N. Analytical Biochemistry, 1976, 72, e254. 30 Birks T A, Li Y W. Journal of Lightwave Technology, 1992, 10, 432. 31 Tong L, Gattass R R, Ashcom J B, et al. Nature, 2003, 426, 816. 32 Pricking S, Giessen H. Optics Express, 2010, 18, 3426. 33 Kaufman J J, Tao G, Shabahang S, et al. In:2012 Conference on Lasers and Electro-Optics (CLEO). San Jose, 2012, pp. 1. 34 Wei L, Hou C, Levy E, et al. Advanced Materials, 2017, 29, 1603033. 35 Venter O, Sanderson E W, Magrach A, et al. Nature Communications, 2016, 7, 1. 36 Aktas O, Ozgur E, Tobail O, et al. Advanced Optical Materials, 2014, 2, 618. 37 Gumennik A, Wei L, Lestoquoy G, et al. Nature Communications, 2013, 4, 1. 38 Vermillac M, Lupi J F, Peters F, et al. Journal of the American Ceramic Society, 2017, 100, 1814. 39 Gumennik A, Levy E C, Grena B, et al. Proceedings of the National Academy of Sciences, 2017, 114, 7240. 40 Yan W, Page A, Nguyen-Dang T, et al. Advanced materials, 2019, 31, 1802348. 41 Zhang J, Li K, Zhang T, et al. Advanced Functional Materials, 2017, 27, 1703245. 42 Zhang J, Wang Z, Wang Z, et al. ACS Applied Materials & Interfaces, 2019, 11, 45330. 43 Zhang J, Wang Z, Wang Z, et al. Nature communications, 2019, 10, 5206. 44 Kaufman J J, Bow C, Tan F A, et al. In:Australian Conference on Optical Fibre Technology. Sydney, 2016, pp.AW4C. 1. |
|
|
|