INORGANIC MATERIALS AND CERAMIC MATRIX COMPOSITES |
|
|
|
|
|
Field Emission Performance Mechanism and Microdomain Analysis of Nickel-based Few-layer Graphene Electrodes |
SONG Xiaoyong1, FANG Shuoyang1,2, ZHAO Ming2,3, SUN Lujun2,*, JIANG Zhizhong2,3
|
1 College of Energy and Power Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450045, China 2 Institute of Nuclear Energy Safety Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China 3 Science Island Branch, Graduate School of University of Science and Technology, Hefei 230031, China |
|
|
Abstract Graphene has been widely used in the field of industrial technology because of its excellent properties. The adsorption of alkali metal atoms by graphene will greatly reduce the surface work function, and its application in the electrode material of thermoelectric devices can significantly improve the output performance of devices. The results show that the cesium vapor forms a stable structure on the surface of nickel-substrate graphene in the form of cesium atoms by using the ‘yo-yo’ method of alternating activation of cesium and oxygen. The photocurrent increases gradually, and the work function on the surface of graphene decreases. The oxygen atom interacts with the cesium atom adsorbed on the surface. Under the action of the oxygen atom, the cesium atom is ionized, and the photocurrent increases rapidly, further reducing the work function on the surface of graphene. XPS and UPS analysis results showed that the minimum values of the surface work function of the bilayer graphene, trilayer graphene and penta layer graphene after cesium oxygen activation were 1.446 eV, 1.388 eV and 1.253 eV, respectively, which decreased by 56.38%, 58.55% and 62.58% compared with that before activation. The decreased degree of the work function is related to the number of graphene layers. The increase of the number of graphene layers promotes the generation of the Cs-O-Cs dipole structure, and Cs2O and CsC8 have a synergistic effect on the decrease of the work function. In addition, the Cs-O-C dipole strengthens the effect of the C-Cs dipole on the longitudinal electric field of the surface, and explains the mechanism of the decrease of the work function of graphene after cesium deposition.
|
Published: 25 June 2023
Online: 2023-06-20
|
|
Fund:National Natural Science Foundation of China (2180051117) and the National Magnetic Confinement Fusion Program of China (2018YFE0312200). |
|
|
1 Su S H, Fu T, Wang Y, et al. Journal of Xiamen University(Natural Science), 2021, 60(3), 509(in Chinese). 苏山河, 付彤, 王远, 等. 厦门大学学报(自然科学版), 2021, 60(3), 509. 2 Liao T J, Chen Y, Yang Z M. Scientia Sinica(Technologica), 2021, 51(1), 46(in Chinese). 廖天军, 陈渝, 杨智敏. 中国科学:技术科学, 2021, 51(1), 46. 3 Wu W R, Liu J Z, Zhao X J, et al. Scientia Sinica(Technologica), 2019, 49(1), 1(in Chinese). 吴伟仁, 刘继忠, 赵小津, 等. 中国科学:技术科学, 2019, 49(1), 1. 4 Liao T J, Lin B H. Scientia Sinica(Technologica), 2019, 49(8), 873(in Chinese). 廖天军, 林比宏. 中国科学:技术科学, 2019, 49 (8), 873. 5 Khalid K A A, Leong T J. IEEE Transactions on Electron Devices, 2016, 63(6), 1. 6 Zhu W W. Numerical simulation and experimental study of heat transfer of thermionic energy conversion. Master’s Thesis, Southeast University, China, 2019(in Chinese). 朱伟伟. 热电子发射能量转化传热过程的数值模拟和实验研究. 硕士学位论文, 东南大学, 2018. 7 Chou S H, Voss J, Vojvodic A, et al. Journal of Physical Chemistry C, 2014, 118(21), 11303. 8 Dubridge L A, Roehr W W. Physical Review, 1932, 42(1), 42. 9 King N, Allen Y. Physical Review, 1938, 53(7), 570. 10 Rump B S, Gehman B L. Journal of Applied Physics, 1965, 36(8), 2352. 11 Yarygin V I. Journal of Cluster Science, 2012, 23(1), 77. 12 Ma R, Zheng J P, Zhao S Z, et al. Atomic Energy Science and Technology, 2019, 53(1), 24. 13 Guo H. Structure and physical properties of intercalated silicon, germanium and oxides at the interface of epitaxially-grown graphene and metal substrates. Ph. D. Thesis, University of Chinese Academy of Sciences, China, 2019(in Chinese). 郭辉. 金属表面上外延石墨烯的硅/锗及其氧化物插层与结构物性研究. 博士学位论文, 中国科学院大学(中国科学院物理研究所), 2019. 14 Jiao G C, Zhang K M, Zhang Y J, et al. Acta Photonica Sinica, 2022, 51(2), 0212001. 焦岗成, 张锴珉, 张益军, 等. 光子学报, 2022, 51(2), 0212001. 15 Fang C W. Surface purification evaluation and process optimization study of GaAs(100)photocathode. Master’s Thesis, Nanjing University of Science and Technology China, 2019(in Chinese). 方城伟. GaAs(100)光电阴极的表面净化评估和工艺优化研究. 硕士学位论文, 南京理工大学, 2019. 16 Shen Y, Chen L, Su L G, et al. Materials Science in Semiconductor Processing, 2015, 39, 61. 17 Wang W J, Zheng J P, Qi L J, et al. In:Conference Record of the 2019 Annual Conference of Chinese Nuclear Society. Neimenggu, 2019, pp. 110(in Chinese). 王卫军, 郑剑平, 齐立君, 等. 中国核学会2019年学术年会. 内蒙古, 2019, pp.110. 18 Qiao J L, Xu Y, Gao Y T, et al. Acta Photonica Sinica, 2016, 45(4), 82 (in Chinese). 乔建良, 徐源, 高有堂, 等. 光子学报, 2016, 45(4), 82. 19 Yan H J. First-principies study of the oxygen adsorption and dissociation on graphene for Li-air batteries. Master’s Thesis, Jiangxi Normal University, China, 2013(in Chinese). 鄢慧君. 第一性原理研究氧气分子在石墨烯表面的吸附和解离. 硕士学位论文, 江西师范大学, 2013. 20 Mustafaev A S, Yarygin V I, Soukhomlinov V S, et al. Journal of Applied Physics, 2018, 124(12), 123. 21 He X J, Yuan M N, Shi M D, et al. Journal of Atomic and Molecular Physics, 2018, 35(2), 353(in Chinese). 何小晶, 原梅妮, 史明东, 等. 原子与分子物理学报, 2018, 35(2), 353. 22 Sun W, Yang S B, Tang S W, et al. Journal of Liaoning Technical University(Natural Science), 2018, 37(1), 131(in Chinese). 孙闻, 杨绍斌, 唐树伟, 等. 辽宁工程技术大学学报(自然科学版), 2018, 37(1), 131. 23 Chan K T, Neaton J B, Cohen M L. Physical Review. B, Condensed matter, 2008, 77(23), 235430-1. 24 Tompa G S, Carr W E, Seidl M. Applied Physics Letters, 1986, 49(22), 1511. 25 Ding S, Zheng J P, Zhong W Y. Atomic Energy Science and Technology. 2019, 53(1), 1 (in Chinese). 丁硕, 郑剑平, 钟武烨. 原子能科学技术, 2019, 53(1), 1. 26 Song X X, Sun Y, Li C, et al. In:Conference Record of the 20th Annual Meeting of the Vacuum Electronics Branch of the Chinese Institute of Electronics. Fujian, 2016, pp. 102(in Chinese). 宋新祥, 孙宇, 李春, 等. 中国电子学会真空电子学分会第二十届年会. 福建, 2016, pp.102. 27 Li Y, Xu G, Hu H, et al. Journal of Electronic Materials, 2021, 50, 186. |
|
|
|