Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (9): 1385-1400    https://doi.org/10.11896/j.issn.1005-023X.2018.09.001
  材料与可持续发展(一)—— 面向洁净能源的先进材料 |
基于印刷技术制备钙钛矿太阳电池
李恒月,龚辰迪,黄可卿,阳军亮
中南大学物理与电子学院先进材料超微结构与超快过程研究所,长沙 410083
A Review on the Fabrication of Perovskite Solar Cells via Printing Techniques
LI Hengyue, GONG Chendi, HUANG Keqing, YANG Junliang
Institute of Super-microstructure and Ultrafast Process in Advanced Materials, School of Physics and Electronics, Central South University, Changsha 410083
下载:  全 文 ( PDF ) ( 3317KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 近年来,钙钛矿太阳电池(Perovskite solar cells, PSCs)以其优异的光电转换性能和溶液制备成本低等优势受到了科研工作者和产业界人士的广泛关注,被认为是新一代薄膜太阳电池技术中的杰出代表。目前,钙钛矿太阳电池的光电转换效率(Power conversion efficiency, PCE)已经从2009年报道的3.8%迅速提升到现在的22.7%,达到商业化多晶硅、碲化镉、铜铟镓硒等太阳电池水平。   目前,溶液旋涂法是实验室制备钙钛矿太阳电池的常用方法。虽然旋涂法操作简单、成膜速度快、重复性好,然而该法缺点也很明显:(1)材料浪费严重;(2)不具备图案化功能;(3)不适用于工业化的连续生产。因此,溶液旋涂技术无法满足钙钛矿太阳电池今后大规模工业化生产所需的大面积、低成本等制造要求。从实验室小面积器件制备转变到可大面积的产业化制备以及降低钙钛矿太阳电池的生产成本,将是钙钛矿太阳电池产业化过程中的一个重要课题。   在钙钛矿太阳电池的制备方法中,印刷技术因具有材料利用率高、成本低、工艺效率高、可大面积制备、适用于柔性基底等特点而备受关注。基于印刷工艺制备的小面积钙钛矿太阳电池效率已接近20%,大面积(>10 cm2)钙钛矿太阳电池效率在10%~16%之间,大面积柔性钙钛矿太阳电池效率为10%左右。然而,从实验室小器件转变到大规模工业化生产依旧存在许多问题亟待解决。例如:(1)为了加快钙钛矿材料的结晶,在钙钛矿薄膜退火过程中通常采用溶剂工程或惰性气体辅助的方式,这将导致印刷的大面积钙钛矿薄膜质量难以控制以及重复性降低;(2)退火过程中较高的退火温度会限制柔性基底和界面材料的选择;(3)钙钛矿材料本身对空气湿度敏感,需提高钙钛矿层制备过程的环境适应性,降低制备工艺本身对环境条件的限制等。基于此,完善钙钛矿太阳电池的印刷制备工艺并使其适用于工业化生产显得十分重要。   本文综述了基于喷墨打印(Inkjet-printing)、喷涂(Spray-coating)、狭缝涂布(Slot-die coating)、刮涂(Doctor-blading)等印刷技术制备钙钛矿太阳电池的研究进展,并对印刷技术制备钙钛矿太阳电池的前景进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李恒月
龚辰迪
黄可卿
阳军亮
关键词:  钙钛矿  印刷技术  太阳电池    
Abstract: Perovskite solar cells (PSCs) have attracted much attention during the past years due to their excellent photovoltaic properties and low-cost solution processing. The power conversion efficiency (PCE) has been rapidly increased to 22.7% since the first report of 3.8% in 2009, which approaches the levels of commercial polycrystalline silicon solar cells, CdTe solar cells and CIGS solar cells.    Spin-coating is commonly used to fabricate PSCs in the labs, but it can’t meet the requirements for large-scale and low-cost process. It is simple to operate the spin-coating process with good repeatability. However, spin-coating still possesses some shortcomings, including serious waste of materials, only producing film without patterns, incapable of continuous fabrication. Therefore, it cannot match with the production of industrialization with large area and high throughout. It is still a big challenge to transfer the fabrication from lab-scale to large-scale industrialization with low cost and high throughout.   Printing techniques show many advantages, e.g. high material utilization, low cost, large area, high throughout and matching with flexible substrate, and they have been used to fabricate PSCs. The PCE approaching 20% was achieved in printed, small-area PSCs, and numerous efforts have been made to improve printed large-area PSCs with PCE between 10% and 16%. Furthermore, it has already achieved printed, flexible PSCs with PCE of about 10%. There are still many issues to be solved for accelerating the industrialization. Ⅰ. Solvent engineering and gas-assisted treatment, commonly used in spin-coating process for producing high-quality perovskite films, are not matchable with printing process, resulting in the poor morphology and the low reproducibility in printed perovskite film. Ⅱ. The high-temperature annealing process would restrict the use of flexible substrate and the choice of interfacial materials. Ⅲ. Perovskite materials are sensitive to humidity, and it is necessary to improve their environment adaptability and reduce the cost. Hence, it is very important to optimize printing techniques for fabricating large-area PSCs with high efficiency, high throughout and low cost.   In this review, we summarize the research progress on PSCs fabricated via printing techniques, including inkjet-printing, spray-coating, slot-die coating, doctor-blading. Furthermore, we also discuss the challenges and prospects of potential commercial PSCs.
Key words:  perovskite    printing techniques    solar cells
               出版日期:  2018-05-10      发布日期:  2018-07-06
ZTFLH:  TM914.4+2  
基金资助: 国家自然科学基金(51673214);国家重点研发计划纳米科技重点专项(2017YFA0206600)
通讯作者:  阳军亮:男,1979年生,教授,博士研究生导师,主要从事薄膜太阳电池及柔性印刷电子研究 E-mail:junliang.yang@csu.edu.cn   
作者简介:  李恒月:女,1993年生,博士研究生,主要从事印刷薄膜太阳电池研究
引用本文:    
李恒月, 龚辰迪, 黄可卿, 阳军亮. 基于印刷技术制备钙钛矿太阳电池[J]. 《材料导报》期刊社, 2018, 32(9): 1385-1400.
LI Hengyue, GONG Chendi, HUANG Keqing, YANG Junliang. A Review on the Fabrication of Perovskite Solar Cells via Printing Techniques. Materials Reports, 2018, 32(9): 1385-1400.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.09.001  或          http://www.mater-rep.com/CN/Y2018/V32/I9/1385
1 Kojima A, Teshima K, Shirai Y, et al. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells[J].Journal of the American Chemical Society,2009,131(17):6050.
2 https:∥www.nrel.gov/pv/assets/images/efficiency-chart.png
3 Kim H S, IM S H, Park N G. Organolead halide perovskite: New horizons in solar cell research[J].Journal of Physical Chemistry C,2014,118(11):5615.
4 Baikie T, Fang Y, Kadro J M, et al. Synthesis and crystal chemistry of the hybrid perovskite (CH3NH3)PbI3 for solid-state sensitised solar cell applications[J].Journal of Materials Chemistry A,2013,1(18):5628.
5 Ma Y, Wang S, Zheng L, et al. Recent research developments of perovskite solar cells[J].Chinese Journal ofChemistry,2014,32(10):957.
6 Im J H, Chung J, Kim S J, et al. Synthesis, structure, and photovoltaic property of a nanocrystalline 2H perovskite-type novel sensitizer (CH3CH2NH3)PbI3[J].Nanoscale Research Letters,2012,7(1):353.
7 Gao P, Graetzel M, Nazeeruddin M K. Organohalide lead perovskites for photovoltaic applications[J].Energy & Environmental Science,2014,7(8):2448.
8 Burschka J, Pellet N, Moon S J, et al. Sequential deposition as a route to high-performance perovskite-sensitized solar cells[J].Nature,2013,499:316.
9 Liu M, Johnston M B, Snaith H J. Efficient planar heterojunction perovskite solar cells by vapour deposition[J].Nature,2013,501:395.
10 Chen Q, Zhou H, Hong Z, et al. Planar heterojunction perovskite solar cells via vapor-assisted solution process[J].Journal of the American Chemical Society,2014,136(2):622.
11 Im J H, Lee C R, Lee J W, et al. 6.5% efficient perovskite quantum-dot-sensitized solar cell[J].Nanoscale,2011,3(10):4088.
12 Kim H S, Lee C R, Im J H, et al. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%[J].Scientific Reports,2012,2:591.
13 Lee M M, Teuscher J, Miyasaka T, et al. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites[J].Science,2012,338(6107):643.
14 Heo J H, Im S H, Noh J H, et al. Efficient inorganic-organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors[J].Nature Photonics,2013,7:486.
15 Jiang Q, Chu Z N, Wang P Y, et al. Planar-structure perovskite solar cells with efficiency beyond 21%[J].Advanced Materials,2017,29(46):1703852.
16 Yang W S, Park B W, Jung E H, et al. Iodide management in for-mamidinium-lead-halide-based perovskite layers for efficient solar cells[J].Science,2017,356(6345):1376.
17 Norrman K, Ghanbari-Siahkali A, Larsen N B. Studies of spin-coated polymer films[J].Annual Reports Section “C”(Physical Chemistry),2005,101:174.
18 Krebs F C. Fabrication and processing of polymer solarcells: A review of printing and coating techniques[J].Solar Energy Materials and Solar Cells,2009,93(4):394.
19 Ku Z L, Rong Y G, Xu M, et al. Full printable processed mesosco-pic CH3NH3PbI3/TiO2 heterojunction solar cells with carbon coun-ter electrode[J].Scientific Reports,2013,3:3132.
20 Mei A, Li X, Liu L, et al. A hole-conductor-free, fully printable mesoscopic perovskite solar cell with high stability[J].Science,2014,345(6194):295.
21 Chen K, Gao W, Emaminejad S, et al. Printed carbon nanotube electronics and sensor systems[J].Advanced Materials (Weinheim),2016,28(22):4397.
22 Li Y, Jian F. An inkjet-printed TTF-TCNQ nanoweb as an effective modification layer for high mobility organic field-effect transistors[J].Journal of Materials Chemistry C,2014,2(8):1413.
23 Hu Q, Wu H, Sun J, et al. Large-area perovskite nanowire arrays fabricated by large-scale roll-to-roll micro-gravure printing and doctor blading[J].Nanoscale,2016,8(9):5350.
24 Tong S, Wu H, Zhang C, et al. Large-area and high-performance CH3NH3PbI3 perovskite photodetectors fabricated via doctor blading in ambient condition[J].Organic Electronics,2017,49:347.
25 Peng Y, Xiao S, Yang J, et al. The elastic microstructures of inkjet printed polydimethylsiloxane as the patterned dielectriclayer for pressure sensors[J].Applied Physics Letters,2017,110(26):261904.
26 Zhang C, Luo Q, Wu H, et al. Roll-to-roll micro-gravure printed large-area zinc oxide thin film as the electron transport layer for solution-processed polymer solar cells[J].Organic Electronics,2017,45:190.
27 Kim C, Ian G, Eric B, et al. Direct legend printing (DLP) on printed circuit boards using piezoelectric inkjet technology[J].Circuit World,2002,28(2):24.
28 Luo X, Zeng Z G, Wang X H, et al. Preparing two-dimensional nano-catalytic combustion patterns using direct inkjet printing[J].Journal of Power Sources,2014,271:174.
29 Zhang Y, He T, Liu G L, et al. One-pot mass preparation of MoS2/C aerogels for high-performance supercapacitors and lithium-ion batteries[J].Nanoscale,2017,9(28):10059.
30 Kim D, Jenog S, Park B K, et al. Direct writing of silver conductive patterns: Improvement of film morphology and conductance by controlling solvent compositions[J].Applied Physics Letters,2006,89(26):2123.
31 Van D B A M J, De L A W M, Smith P J, et al. Geometric control of inkjet printed features using a gelating polymer[J].Journal of Materials Chemistry,2007,17(7):677.
32 Tian D L, Song Y L, Jiang L. Patterning of controllable surface wettability for printing techniques[J].Chemical Society Review,2013,42(12):5184.
33 Zhang L, Liu H T, Zhao Y, et al. Inkjet printing high-resolution, large-area graphene patterns by coffee-ring lithography[J].Advanced Materials,2012,24(3):436.
34 Kuang M X, Wang L B, Song Y L. Controllable printing droplets for high-resolution patterns[J].Advanced Materials,2014,26(40):6950.
35 Cao X, Wu F Q, Lau C, et al. Top-contact self-aligned printing for high performance carbon nanotube thin-film transistors with sub-micron channel length[J].ACS Nano,2017,11(2):2008.
36 Yin Z P, Huang Y A, Bu N B, et al. Inkjet printing for flexible electronics: Materials, processes and equipments[J].Chinese Science Bulletin,2010,55(30):3383.
37 Mette A, Richter P L, Horteis M, et al. Metal aerosol jet printing forsolar cell metallization[J].Progress in Photovoltaics,2007,15(7):621.
38 Horteis M, Glunz S W. Fine line printed silicon solar cells exceeding[J].Progress in Photovoltaics,2008,16(7):555.
39 Xia Y, Zhang W, Ha M J, et al. Printed sub-2 V gel-electrolyte-gated polymer transistors and circuits[J].Advanced Functional Mate-rials,2010,20(4):587.
40 Jones C S, Lu X J, Renn M, et al. Aerosol-jet-printed, high-speed, flexible thin-film transistor made using single-walled carbon nanotube solution[J].Microelectronic Engineering,2010,87(3):434.
41 Grunwald I, Groth E, Wirth I, et al. Surface biofunctionalization and production of miniaturized sensor structures using aerosol prin-ting technologies[J].Biofabrication,2010,2(1):014106.
42 Chang J, Lin Z, Li J, et al. Enhanced polymer thin film transistor performance by carefully controlling the solution self-assembly and film alignment with slot die coating[J].Advanced Electronic Mate-rials,2015,1(7):1500036.
43 阳军亮,吴涵,熊健,等.一种稳定的平面异质结钙钛矿太阳能电池及其制备方法:中国,201510121138.1[P].2015-03-20.
44 Liu F, Ferdous S, Schalble E, et al. Fast printing and in situ morphology observation of organic photovoltaics using slot-die coating[J].Advanced Materials (Weinheim),2015,27(5):886.
45 阳军亮,张楚俊,胡巧,等.一种大面积柔性功能石墨烯薄膜的卷对卷印刷制备方法:中国,201610380610.8[P].2016-06-01.
46 Padinger F, Brabec C J, Fromherz T, et al. Fabrication of large area photovoltaic devices containing various blends of polymer and fullerene derivatives by using the doctor blade technique[J].Opto-Electronics Review,2000,8(4):280.
47 Lin S Y, Yang B C, Zhou C H, et al. Efficient and stable planar hole-transport-material-free perovskite solar cells[J].Organic Electronics,2018,53:235.
48 Li S G, Tong S C, Yang J L, et al. High-performance formamidi-nium-based perovskite photodetectors fabricated via doctor-blading deposition in ambient condition[J].Organic Electronics,2017,47:102.
49 Xu L, Zhou C H, Wan F, et al. Stable monolithic hole-conductor-free perovskite solar cells using TiO2 nanoparticle binding carbon films[J].Organic Electronics,2017,45:131.
50 Li S G, Yang B C, Wu R S, et al. High-quality CH3NH3PbI3 thin film fabricated via intramolecular exchange for efficient planar he-terojunction perovskite solar cells[J].Organic Electronics,2016,39:304.
51 Wu H, Zhang C J, Ding K X, et al. Efficient planar heterojunction perovskite solar cells fabricated by in-situ thermal-annealing doctor blading in ambient condition[J].Organic Electronics,2017,45:302.
52 Sanyal M, Schmidt H B, Klein M F G, et al. In situ X-ray study of drying-temperature influence on the structural evolution of bulk-heterojunction polymer-fullerene solar cells processed by doctor-blading[J].Advanced Energy Materials,2011,1(3):363.
53 Sanyal M, Schmidt H B, Klein M F G, et al. Effect of photovoltaic polymer/fullerene blend composition ratio on microstructure evolution during film solidification investigated in real time by X-ray diffraction[J].Macromolecules,2011,44(10):3795.
54 Lee T M, Lee S H, Noh J H, et al. The effect of shear force on ink transfer in gravure offset printing[J].Journal of Micromechanics & Microengineering,2010,20(12):125026.
55 Chung D Y, Huang J S, Bradley D D C, et al. High performance, flexible polymer light-emitting diodes (PLEDs) with gravure contact printed hole injection and light emitting layers[J].Organic Electro-nics,2010,11(6):1088.
56 Lee H, Kim A, Cho S M, et al. Nanoscale thickness and roughness control of gravure printed organic light emitting layer with poly(N-vinyl carbazole) and Ir(ppy)3[J].Journal of Nanoscience & Nanotechnology,2009,9(12):7278.
57 Hambsch M, Reuter K, Stanel M, et al. Uniformity of fully gravure printed organic field-effect transistors[J].Materials Science and Engineering:B,2010,170(1-3):93.
58 Kaihovirta N J, Tobjork D, Makela T, et al. Low-voltage organic transistors fabricated using reverse gravure coating on prepatterned substrates[J].Advanced Energy Materials,2008,10(7):640.
59 Voigt M M, Mackenzie R C I, Yau C P, et al. Gravure printing for three subsequent solar cell layers of inverted structures on flexible substrates[J].Solar Energy Materials and Solar Cells,2011,95(2):731.
60 Kopola P, Aernouts T, Guillerez S, et al. High efficient plastic solar cells fabricated with a high-throughput gravure printing method[J].Solar Energy Materials and Solar Cells,2010,94(10):1673.
61 崔铮.印刷电子学:材料、技术及其应用[M].北京:高等教育出版社,2012:3.
62 Wei Z, Chen H, Yan K, et al. Inkjet printing and instant chemical transformation of a CH3NH3PbI3/nanocarbon electrode and interface for planar perovskite solar cells[J].Angewandte Chemie (International Edition),2014,53(48):13239.
63 Bag M, Jiang Z, Renna L A, et al. Rapid combinatorial screening of inkjet-printed alkyl-ammonium cations in perovskite solar cells[J].Materials Letters,2016,164:472.
64 Mathies F, Abzieher T, Hochstuhl A, et al. Multipass inkjet printed planar methylammonium lead iodide perovskite solar cells[J].Journal of Materials Chemistry A,2016,4(48):19207.
65 Li S G, Jiang K J, Su M J, et al. Inkjet printing of CH3NH3PbI3 on a mesoscopic TiO2 film for highly efficient perovskite solar cells[J].Journal of Materials Chemistry A,2015,3(17):9092.
66 Barrows A T, Pearson A J, Kwak C K, et al. Efficient planar he-terojunction mixed-halide perovskite solar cells deposited via spray-deposition[J].Energy & Environmental Science,2014,7(9):2944.
67 Bi Z, Liang Z, Xu X, et al. Fast preparation of uniform large grain size perovskite thin film in air condition via spray deposition method for high efficient planar solar cells[J].Solar Energy Materials and Solar Cells,2017,162:13.
68 Das S, Yang B, Gu G, et al. High-performance flexible perovskite solar cells by using a combination of ultrasonic spray-coating and low thermal budget photonic curing[J].ACS Photonics,2015,2(6):680.
69 Heo J H, Lee M H, Jang M H, et al. Highly efficient CH3NH3-PbI3-xClx mixed halide perovskite solar cells prepared by re-dissolution and crystal grain growth via spray coating[J].Journal of Mate-rials Chemistry A,2016,4(45):17636.
70 Ishihara H, Chen W, Chen Y C, et al. Electrohydrodynamically assisted deposition of efficient perovskite photovoltaics[J].AdvancedMaterials Interfaces,2016,3(9):1500762.
71 Xia X, Li H, Wu W, et al. Efficient light harvester layer prepared by solid/mist interface reaction for perovskite solar cells[J].ACS Applied Materials & Interfaces,2015,7(31):16907.
72 Vak D, Hwang K, Faulks A, et al. 3Dprinter based slot-die coater as a lab-to-fab translation tool for solution-processed solar cells[J].Advanced Energy Materials,2015,5(4):1401539.
73 Hwang K, Jung Y S, Heo Y J, et al. Toward large scale roll-to-roll production of fully printed perovskite solar cells[J].Advanced Materials,2015,27(7):1241.
74 Cotella G, Baker J, Worsley D, et al. One-step deposition by slot-die coating of mixed lead halide perovskite for photovoltaic applications[J].Solar Energy Materials and Solar Cells,2017,159:362.
75 Jung Y S, Hwang K, Heo Y J, et al. One-Step printable perovskite films fabricated under ambient conditions for efficient and reproducible solar cells[J].ACS Applied Materials & Interfaces,2017,9(33):27832.
76 Qin T S, Huang W C, Kim J E, et al. Amorphous hole-transporting layer in slot-die coated perovskite solar cells[J].Nano Energy,2017,31:210.
77 Ciro J, Mejia M A, Jaramillo F. Slot-die processing of flexible pe-rovskite solar cells in ambient conditions[J].Solar Energy,2017,150:570.
78 Kim J H, Williams S T, Cho N, et al. Enhanced environmental stability of planar heterojunction perovskite solar cells based on blade-coating[J].Advanced Energy Materials,2015(5):141229.
79 Yang Z, Chueh C C, Zuo F, et al. High-performance fully printable perovskite solar cells via blade-coating technique under the ambient condition[J].Advanced Energy Materials,2015,5(13):1500328.
80 Mallajosyula A T, Fernando K, Bhatt S, et al. Large-area hysteresis-free perovskite solar cells via temperature controlled doctor blading under ambient environment[J].Applied Materials Today,2016,3:96.
81 Razza S, Di G F, Matteocci F, et al. Perovskite solar cells and large area modules (100 cm2) based on an air flow-assisted PbI2 blade coating deposition process[J].Journal of Power Sources,2015,277:286.
82 Back H, Kim J, Kim G, et al. Interfacial modification of hole transport layers for efficient large-area perovskite solar cells achieved via blade-coating[J].Solar Energy Materials and Solar Cells,2016,144:309.
83 Hu Q, Zhao L C, Wu J, et al. In situ dynamic observations of pe-rovskite crystallisation and microstructure evolution intermediated from (PbI6)4- cage nanoparticles[J].Nature Communications,2017,8:15688.
84 Deng Y, Peng E, Shao Y, et al. Scalable fabrication of efficient organolead trihalide perovskite solar cells with doctor-bladed active la-yers[J].Energy &Environmental Science,2015,8(5):1544.
85 Deng Y, Dong Q, Bi C, et al. Air-stable, efficient mixed-cation pe-rovskite solar cells with Cu electrode by scalable fabrication of active layer[J].Advanced Energy Materials,2016,6(11):1600372.
86 Tang S, Deng Y, Zheng X, et al. Composition engineering in doctor-blading of perovskite solar cells[J].Advanced Energy Materials,2017,7(18):1700302.
87 Deng Y H, Wang Q, Yuan Y B, et al. Vividly colorful hybrid pe-rovskite solar cells by doctor-blade coating with perovskite photonic nanostructures[J].Materials Horizons,2015,2(6):578.
88 Yang M, Li Z, Reese M O, et al. Perovskite ink with wide proces-sing window for scalable high-efficiency solar cells[J].Nature Energy,2017,2:17038.
89 Hu Y, Si S, Mei A Y, et al. Stable large-area (10×10 cm2) printable mesoscopic perovskite module exceeding 10% efficiency[J].Solar RRL,DOI:10.1002/solr.201600019.
90 He M, Li B, Cui X, et al. Meniscus-assisted solution printing of large-grained perovskite films for high-efficiency solar cells[J].Nature Communications,2017,8:16045.
91 Hashmi S G, Martineau D, Li X, et al. Air processed inkjet infiltrated carbon based printed perovskite solar cells with high stability and reproducibility[J].Advanced Materials Technologies,2017,2(1):1600183.
92 Mohamad D K, Griffin J, Bracher C, et al. Spray-cast multilayer organometal perovskite solar cells fabricated in air[J].Advanced Energy Materials,2016,6(22):1600994.
93 Liang Z R, Zhang S H, Xu X Q, et al. A large grain size perovskite thin film with a dense structure forplanar heterojunction solar cells via spray deposition under ambient conditions[J].RSC Advances,2015,5(74):60562.
94 Chang W C,Lan D H, Lee K M, et al. Controlled deposition and performance optimization of perovskite solar cells using ultrasonic spray-coating of photoactive layers[J].ChemSusChem,2017,10(7):1405.
95 Nejand B A, Gharibzadeh S, Ahmadi V, et al. New scalable cold-roll pressing for post-treatment of perovskite microstructure in perovskite solar cells[J].Journal Physical Chemistry C,2016,120(5):2520.
96 Ramesh M, Boopathi K M, Huang T Y, et al. Using an airbrush pen for layer-by-layer growth of continuous perovskite thin films for hybrid solar cells[J].ACS Applied Materials & Interfaces,2015,7(4):2359.
97 Nejand B A, Gharibzadeh S, Ahmadi V, et al. Novel solvent-free perovskite deposition in fabrication of normal and inverted architectures of perovskite solar cells[J].Scientific Reports,2016,6:33649.
98 Jung Y S, Hwang K, Scholes F H, et al. Differentially pumped spray deposition as a rapid screening tool for organic and perovskite solar cells[J].Scientific Reports,2016,6:20357.
99 Habibi M, Ahmadian M R, Eslamian M. Optimization of spray coa-ting for the fabrication of sequentially deposited planar perovskite solar cells[J].Journal of Photonics for Energy,2017,7(2):022003.
100 Zabihi F, Ahmadian M R, Eslamian M. Fundamental study on the fabrication of inverted planar perovskite solar cells using two-step sequential substrate vibration-assisted spray coating (2S-SVASC)[J].Nanoscale Research Letters,2016,11:71.
101 Kavadiya S, Niedzwiedzki D M, Huang S, et al. Electrospray-assisted fabrication of moisture-resistant and highly stable perovskite solar cells at ambient conditions[J].Advanced Energy Materials,2017,7(18):1700210.
102 Chal G D, Luo S Q, Zhou H, et al. CH3NH3PbI3-xBrx perovskite solar cells via spray assisted two-step deposition: Impact of bromide on stability and cell performance[J].Material Design,2017,125:222.
103 Boopathi K M, Ramesh M, Perumal P, et al. Preparation of metal halide perovskite solar cells through a liquid droplet assisted method[J].Journal of Materials Chemistry A,2015,3(17):9257.
104 Li F M, Bao C X, Gao H, et al. A facile spray-assisted fabrication of homogenous flat CH3NH3PbI3 films for high performance mesostructure perovskite solar cells[J].Materials Letters,2015,157:38.
105 Huang H B, Shi J J, Zhu L F, et al. Two-step ultrasonic spray deposition of CH3NH3PbI3 for efficient and large-area perovskite solar cell[J].Nano Energy,2016,27:352.
106 Tait J G, Manghooli S, Qiu W, et al. Rapid composition screening for perovskite photovoltaics via concurrently pumped ultrasonic spray coating[J].Journal of Materials Chemistry A,2016,4(10):3792.
107 Chai G D, Wang S Z, Xia Z G, et al.PbI2 platelets for inverted planar organolead halide perovskite solar cells via ultrasonic spray de-position[J].Semiconductor Science and Technology,2017,32(7):074003.
108 Schmidt T M, Larsen O T T, Carle J E, et al. Upscaling of perovskite solar cells: Fully ambient roll processing of flexible perovskite solar cells with printed back electrodes[J].Advanced Energy Materials,2015,5(15):1500569.
109 Gu Z W, Zuo L J, Larsen O T T, et al. Interfacial engineering of self-assembled monolayer modified semi-roll-to-roll planar heterojunction perovskite solar cells on flexible substrates[J].Journal of Materials Chemistry A,2015,3(48):24254.
110 Heo Y J, Kim J E, Weerasinghe H, et al. Printing-friendly sequential deposition via intra-additive approach for roll-to-roll process of perovskite solar cells[J].Nano Energy,2017,41:443.
111 Tzounis L, Stergiopoulos T, Zachariadis A, et al. Perovskite solar cells from small scale spin coating process towards roll-to-roll prin-ting: Optical and Morphological studies[J].Materials Today:Proceedings,2017,4(4):5082.
112 Kim J H, Williams S T, Cho N, et al. Enhanced environmental stability of planar heterojunction perovskite solar cells based on blade-coating[J].Advanced Energy Materials,2015,5(4):1401229.
113 Lee J W, Na S I, Kim S S. Efficient spin-coating-free planar heterojunction perovskite solar cells fabricated with successive brush-painting[J].Journal of Power Sources,2017,339:33.
114 Bag S, Deneault J R, Durstock M F. Aerosol-jet-assisted thin-film growth of CH3NH3PbI3 perovskites—A means to achieve high quality, defect-free films for efficient solar cells[J].Advanced Energy Materials,2017,7(20):1701151.
[1] 卢刚, 杨振英, 何凤琴, 郑璐, 钱俊, 封先锋, 高嘉庆. N型背接触异质结太阳电池背面结构参数优化[J]. 材料导报, 2019, 33(z1): 45-49.
[2] 肖长江. 钙钛矿铁电体在超高压下的铁电重现[J]. 材料导报, 2019, 33(7): 1163-1168.
[3] 孙淑红, 朱艳, 青红梅, 胡永茂, 杨斌. 亚稳相纤锌矿铜锌锡硫(WZ-CZTS)纳米晶的合成及光伏应用的研究现状与进展[J]. 材料导报, 2019, 33(5): 761-769.
[4] 王恩胜, 余丽萍, 廉世勋, 周文理. 全无机钙钛矿量子点的研究进展[J]. 材料导报, 2019, 33(5): 777-783.
[5] 于秀玲, 梁雪梅, 李雪. 掺杂不同价态离子的SrFeO3-δ钙钛矿氧化物的电化学性能[J]. 材料导报, 2019, 33(14): 2305-2310.
[6] 陈俊帆, 赵生盛, 高天, 徐玉增, 张力, 丁毅, 张晓丹, 赵颖, 侯国付. 高效单晶硅太阳电池的最新进展及发展趋势[J]. 材料导报, 2019, 33(1): 110-116.
[7] 刘仪柯, 唐雅琴, 蒋良兴, 刘芳洋, 秦 勤, 张 坤. 溅射Cu-Zn-Sn金属预制层后硫(硒)化法制备Cu2ZnSn(SxSe1-x)4薄膜及其光伏特性[J]. 《材料导报》期刊社, 2018, 32(9): 1412-1416.
[8] 郝立成, 张明, 陈文超, 冯晓东. 高效本征薄层异质结(HIT)太阳电池技术研究进展[J]. 《材料导报》期刊社, 2018, 32(5): 689-695.
[9] 周嵬, 王习习, 朱印龙, 戴洁, 朱艳萍, 邵宗平. 面向金属-空气电池和中低温固体氧化物燃料电池应用的钴基电催化剂综述[J]. 材料导报, 2018, 32(3): 337-356.
[10] 甘一升, 陈苗苗, 王玉龙, 万丽, 孔梦琴, 胡航, 王世敏. 以ZnO纳米棒阵列为电子传输层的无空穴层有机-无机杂化钙钛矿太阳能电池[J]. 材料导报, 2018, 32(23): 4047-4050.
[11] 彭家奕, 夏雪峰, 江奕华, 邹敏华, 王晓峰, 李璠. 无机电荷传输层在有机-无机杂化钙钛矿太阳能电池中的应用及研究进展[J]. 材料导报, 2018, 32(23): 4027-4040.
[12] 何云龙, 沈沪江, 王炜, 袁慧慧. 柔性染料敏化太阳能电池和柔性钙钛矿太阳能电池关键电极材料研究进展[J]. 材料导报, 2018, 32(21): 3677-3688.
[13] 王松林, 徐向棋, 陈子潘, 孟广耀. 掺碱土金属的双稀土铬酸盐(Pr0.5Nd0.5)0.7M0.3CrO3-δ(M=Sr, Ca)用于SOFC连接材料[J]. 材料导报, 2018, 32(16): 2728-2732.
[14] 邹金龙, 罗玉峰, 肖宗湖, 胡云, 饶森林, 刘绍欢. 空穴传输材料在高效钙钛矿太阳能电池中的发展演变[J]. 材料导报, 2018, 32(15): 2542-2554.
[15] 贺凯, 陈诺夫, 魏立帅, 王从杰, 陈吉堃. 退火对铝诱导结晶锗薄膜的影响及其机理[J]. 材料导报, 2018, 32(15): 2571-2575.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed