Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (7): 1165-1173    https://doi.org/10.11896/j.issn.1005-023X.2018.07.018
  材料综述 |
降冰片烯及其衍生物开环易位聚合的研究进展
姜啟亮1, 陈琦1, 姜付本1, 陈宬2, VERPOORT Francis1,2
1 武汉理工大学材料科学与工程学院,武汉 430070;
2 武汉理工大学材料复合新技术国家重点实验室,武汉 430070
A Review of the Ring-opening Metathesis Polymerization Involving Norbornene or Its Derivatives
JIANG Qiliang1, CHEN Qi1, JIANG Fuben1, CHEN Cheng2, VERPOORT Francis1,2
1 School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070;
2 State Key Laboratory of Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070
下载:  全 文 ( PDF ) ( 1310KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 环烯烃开环易位聚合(ROMP)是指在金属催化剂存在下,环烯烃中的碳碳双键断裂并重新结合形成新的分子,得到的聚合物中留有不饱和双键,具有活性聚合的特点。ROMP是改造碳碳双键最有效的手段之一,极具特色且广泛应用于高分子材料与有机分子的合成。关于环烯烃ROMP研究早在20世纪50年代就已开始,当时的研究主要集中在以Ti、Re、W、Mo等过渡金属配合物组成的Ziegler-Natta催化体系引发环烯烃ROMP。20世纪80年代中期以后,研究则以亚烷基类或卡宾型类催化剂为主,其引发环烯烃ROMP的机理更加清晰。随着结构明确、稳定高效的环烯烃ROMP催化剂的开发与完善,该领域的研究焦点开始转向环烯烃ROMP适用单体的拓展以及所得聚合物的应用。
在环烯烃ROMP研究中,降冰片烯及其衍生物是研究最多和应用最广的一类单体,这是因为它们的反应活性较高,来源丰富,价格也不昂贵。除研究拓展ROMP适用单体外,研究者主要从降冰片烯基单体的空间位阻、化学构型、侧基极性以及与其他环烯烃或降冰片烯基单体共聚改性等方面不断进行尝试,同时充分发挥环烯烃ROMP优势,与其他聚合方法联用,不断改善所得聚合物的性能并将其应用于不同研究领域。
降冰片烯及其衍生物ROMP在阻燃材料、交换膜、纳米材料、生物医药等领域已取得一系列研究成果,其中在阻燃材料领域研究最早且许多产品已经工业化。在交换膜领域,由于降冰片烯基聚合物膜的热稳定性、耐酸碱性和电导率均较好,目前的研究主要是探索如何在燃料电池中获得应用。纳米材料是近年来最热门的研究领域之一,降冰片烯基纳米金属聚合物材料和纳米磁性聚合物材料等已有初步应用。在生物医药领域,降冰片烯及其衍生物极具发展前景,目前的研究主要集中在药物传输材料,已有初步的研究成果,但要实现工业化尚待进一步研究。此外,基于降冰片烯及其衍生物的接枝聚合物、嵌段聚合物、液晶聚合物、导电聚合物等也获得人们越来越多的关注。
本文简要介绍了降冰片烯及其衍生物ROMP的反应机理,以及ROMP催化剂从多组分到钼、钨系再到钌系等几个发展阶段,详细综述了降冰片烯及其衍生物ROMP在上述若干领域的研究进展,并在此基础上简要探讨了今后研究与开发应用的新方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
姜啟亮
陈琦
姜付本
陈宬
VERPOORT Francis
关键词:  开环易位聚合(ROMP)  催化剂  降冰片烯  降冰片烯衍生物  阻燃  离子交换膜  质子交换膜  药物传输  聚合物纳米复合材料    
Abstract: Ring-opening metathesis polymerization (ROMP) of cyclic olefins, a well-established reaction, is one of the most effective means to transform carbon-carbon double bonds and has been widely used in polymer science and organic chemistry. ROMP of cyclic olefins occurs in the presence of a metal carbene catalyst which breaks the carbon-carbon double bonds of the cyclic olefins and connects them into new unsaturated polymers. The research over the cyclic olefins metathesis polymerization was initiated in the 1950s, focusing originally on the catalytic polymerization of cyclic olefins using Ziegler-Natta catalytic systems consisting of transition metal complexes mainly based on Ti, Re, W, Mo, etc. Since the middle of the 1980s, the investigations were concentrated on the polymerization mechanism and alkylidene or carbene catalysts. With the establishment of well-defined, stable and efficient catalysts, the researchers’ concern has been turned to new applications of cycloolefin polymers, and also to developing new cycloolefin ROMP monomers.
For the ROMP reaction, norbornene and its derivatives have been studied extensively since they are highly reactive, easily accessible and relatively low-cost. Besides the expansion of the monomer species available for ROMP, continuous research endeavors have been made to enhance the ROMP resultant polymers’ performance and application potential, mainly from the aspects of the steric hindrance, chemical configuration, pendant polarities of norbornene-based monomers, and the copolymerization of other cyclic olefins or norbornene-based monomers, as well as conjunction with other polymerization methods.
The ROMP of norbornene and its derivatives also made certain advances in the fields of flame retardancy, ion exchange or proton exchange membranes, nanomaterials, biomedical materials and so on, in which flame retardant materials made from norbornene or norbornene derivatives have long been researched and broadly achieved industrialization. In the field of exchange membranes, researchers concentrate on applying norbornene-based polymer membranes to fuel cell due to their thermal stability, acid and alkali resistance, and electrical conductivity. Nanomaterials is one of the most popular research fields in recent years, and nano-metal/polymer composites and magnetic polymer nanocomposites have realized tentative application. The biomedical materials especially drug delivery systems which involve norbornene derivatives have displayed impressive potential, though the industrialization and commercialization still deserve further exploration. Additionally, the norbornene-derivative-based graft polymers, block polymers, liquid crystal polymers, and conductive polymers have also drawn researchers’ attention.
We herein briefly describe the reaction mechanism of ROMP with norbornene and its derivatives as monomer, as well as the ROMP catalysts’ multistage development, i.e. multi-component catalytic systems, molybdenum- or tungsten-based catalytic systems, and ruthenium-based catalytic systems. Moreover, the paper mainly focuses on the recent research progress of ROMP process and products with respect to the norbornene species in the above mentioned fields, and ends with a prospective discussion over the expected new directions of this emerging research topic.
Key words:  ring-opening metathesis polymerization (ROMP)    catalyst    norbornene    norbornene derivatives    flame retardancy    ion exchange membrane    proton exchange membrane    drug delivery    polymer nanocomposite
               出版日期:  2018-04-10      发布日期:  2018-05-11
ZTFLH:  O633.4  
基金资助: 国家自然科学基金(21502062)
通讯作者:  Verpoort Francis:通信作者,男,1963年生,博士,教授,研究方向为金属有机化学、催化、新型金属有机骨架(MOFs)材料的制备与应用 E-mail:1252087994@qq.com   
作者简介:  姜啟亮:男,1991年生,硕士研究生,研究方向为降冰片烯及其衍生物开环易位聚合 E-mail:1422035404@qq.com
引用本文:    
姜啟亮, 陈琦, 姜付本, 陈宬, VERPOORT Francis. 降冰片烯及其衍生物开环易位聚合的研究进展[J]. 《材料导报》期刊社, 2018, 32(7): 1165-1173.
JIANG Qiliang, CHEN Qi, JIANG Fuben, CHEN Cheng, VERPOORT Francis. A Review of the Ring-opening Metathesis Polymerization Involving Norbornene or Its Derivatives. Materials Reports, 2018, 32(7): 1165-1173.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.07.018  或          http://www.mater-rep.com/CN/Y2018/V32/I7/1165
1 张玉清.聚双环戊二烯[M].北京:化学工业出版社,2015.
2 Novak B M, Risse W, Grubbs R H. The development of well-defined catalysts for ring-opening olefinmetathesis polymerizations (ROMP)[J].Advances in Polymerence,1992,102(1):47.
3 Zhang D F. Advances in the study on ring-opening metathesis polymerization of norbornene and its derivatives[J].Polymeric Materials Science and Engineering,2000,16(1):13(in Chinese).
张丹枫.降冰片烯及其衍生物开环易位聚合的研究进展[J].高分子材料科学与工程,2000,16(1):13.
4 Cao K,Yuan B,Liu X, et al. Preparation and applications of the chiral norbornene derivatives[J].Progress in Chemistry,2017,29(6):605(in Chinese).
曹堃,袁贝,刘学,等.手性降冰片烯衍生物的制备及应用[J].化学进展,2017,29(6):605.
5 Zhang Y, Song Y X, Shi J L, et al. Synthesis of nobornene[J].Chemical Industry andEngineering Progress,2013,32(12):2800(in Chinese).
张岩,宋月潇,史家乐,等.降冰片烯的合成研究进展[J].化工进展,2013,32(12):2800.
6 Pascual L M, Goetz A E, Roehrich A M, et al. Investigation of tacticity and living characteristics of photoredox-mediated metal-free ring-opening metathesis polymerization[J].Macromolecular Rapid Communications,2017,38(13):13.
7 Hérisson J L, Chauvin Y. Catalyse de transformation des oléfines par les complexes dutungstène. II.Télomérisation des oléfines cycliques en présenced’oléfines acycliques[J].Die Macromolecular Chemistry & Physics,1971,141(1):161.
8 Arlie J P, Chauvin Y, Commereuc D, et al.Catalyse de transformation des oléfines par les complexes du tungstène, 4. Evolution dela distribution des masses moléculaires au cours de la polymérisation des cyclooléfines[J].Die Makromolekulare Chemie,2003,175:861.
9 Kong Y, Yang X H, Wang L, et al. Research advances of ring-ope-ning metathesis polymerization[J].Science Technology and Enginee-ring,2015,15(30):71(in Chinese).
孔勇,杨小华,王琳,等.开环易位聚合研究进展[J].科学技术与工程,2015,15(30):71.
10Schrock R R, Murdzek J S, Gui C B, et al.Synthesis of molybdenum imido alkylidene complexes and some reactions involving acyclic olefins[J].Journal of the American Chemical Society,1990,112:3875.
11Bazan G C, Khosravi E, Schrock R R, et al. Living ring-opening metathesis polymerization of 2,3-difunctionalized norbornadienes by Mo(CH-t-Bu)(N-2,6-C6H3-i-Pr2)(O-t-Bu)2[J].Journal of the American Chemical Society,1990,112:8378.
12Mann T J, Speed A W, Schrock R R, et al. Catalytic Z-selective cross-metathesis withsecondary silyl-and benzyl-protected allylicethers: Mechanistic aspects and applications tonatural product synthesis[J].Angewandte Chemie International Edition,2013,52:8395.
13 Schrock R R. Synthesis of stereoregular polymers through ring-ope-ning metathesis polymerization[J].Accounts of Chemical Research,2014,47(8):2457.
14 Schrock R R, Hoveyda A H. Molybdenum and tungsten imido alkylidene complexes asefficient olefin-metathesis catalysts[J].Angewandte Chemie,2003,42(38):4592.
15 Grubbs R H. Olefin metathesis[J].Cheminform,2004,35(43):7117.
16 Schwab P, France M B, Ziller J W, et al. A series of well-defined metathesis catalysts-synthesis of [RuCl2(CHR)(PR3)2] and its reactions[J].Angewandte Chemie International Edition,2010,34:2039.
17 Schwab P, Grubbs R H, Ziller J W. Synthesis and applications of RuCl2(CHR)(PR3)2: The influence of the alkylidene moiety on metathesis activity[J].Journal of the American Chemical Society,2016,118(1):100.
18 Scholl M, Ding S, Lee C W, et al. Synthesis and activity of a new generation of ruthenium-based olefin metathesis catalysts coordinated with 1,3-dimesityl-4,5-dihydroimidazol-2-ylidene ligands[J].Cheminform,1999,1(6):953.
19 Choi T L, Grubbs R H. Controlled living ring-opening-metathesis polymerization by a fast-initiating ruthenium catalyst[J].Angewandte Chemie,2003,42(15):1743.
20Liu G Y. Synthesis and catalytic activities of functionalized ruthe-nium carbene catalystsfor olefin metathesis[D].Tianjin:Tianjin University,2009(in Chinese).
刘桂艳.功能化钌卡宾烯烃复分解催化剂的合成及性能研究[D].天津:天津大学,2009.
21Vehlow K, Wang D, Buchmeiser M R, et al. Alternating copolyme-rizations using a Grubbs-type initiator with an unsymmetrical, chiral N-heterocyclic carbene ligand[J].Angewandte Chemie,2008,47(14):2615.
22Martin L, Wang D, Kati V, et al. Alternating ring-opening metathesis copolymerizationby Grubbs-type initiators with unsymmetrical N-heterocyclic carbenes[J].Chemistry,2009,15(37):9451.
23 Bielawski C W, Benitez D, Grubbs R H. An “endless” route to cyclic polymers[J].Science,2002,297(5589):2041.
24 Bielawski C W, Benitez D, Grubbs R H. Synthesis of cyclic polybutadiene via ring-opening metathesis polymerization: The importance of removing trace linear contaminants[J].Journal of Bacteriology,2003,125(28):8424.
25 Kong Y, Cheng M, Ren H, et al. Synthesis,structures, and norbornene polymerization behavior of bis (aryloxide-N-heterocyclic carbene) nickel complexes[J].Organometallics,2009,28(20):1677.
26 Kong Y, Tang Y, Wang Z, et al. Ruthenium ring-opening metathesis polymerization catalysts bearing O-aryloxide-N-heterocyclic carbenes[J].Macromolecular Chemistry & Physics,2013,214:492.
27 Torker S,Müller A, Chen P. Building stereoselectivity into a chemoselective ring-opening metathesis polymerization catalyst for alternating copolymerization[J].Angewandte Chemie International Edition,2010,122(22):3762.
28 Torker S, Müller A, Sigrist R, et al. Tuningthe steric properties of a metathesis catalystfor copolymerization of norbornene and cyclooctene toward complete alternation[J].Organometallics,2010,29(12):2735.
29 Chaves H K, Ferraz C P, Jr V P C, et al.Tuning the activity of alternative Ru-based initiators for ring-opening metathesis polymerization of norbornene and norbornadiene by the substituent in 4-CH2R-piperidine[J].Journal of Molecular Catalysis A Chemical,2014,385(385):46.
30Zhang Y J, Zhang C M, Du L Y, et al. Application progress of norbornene derivativeon polymer material[J].New Chemical Materials,2016(7):21(in Chinese).
张亚杰,张朝明,杜丽媛,等.降冰片烯类化合物在高分子材料中的应用进展[J].化工新型材料,2016(7):21.
31Khasat N P, Leach D. Polydicyclopentadiene having improved stabi-lity and toughened with polymeric particles:US,US 5480940 A[P].1996.
32Sjardijn W, Snel J J M. Copolymerization of dicyclopentadiene with norbornene derivatives:US,US5248745[P].1993.
33 Risse W, Grubbs R H. Block and graft copolymers by living ring-opening olefin metathesis polymerization[J].Progress in PolymerScience,2007,32(1):1.
34 Cox J R, Kang H A, Igarashi T, et al. Norbornadiene end-capping of cross-coupling polymerizations: A facile route to triblock polymers[J]. ACS Macro Letters,2012,1(2):334.
35 Bielawski C W, Benitez D, Takeharu Morita A, et al. Synthesis of end-functionalized poly(norbornene)s via ring-opening metathesis polymerization[J].Macromolecules,2001,34(25):8610.
36 Liaw D J, Chen T P, Huang C C. Self-assembly aggregation of highly stable copolynorbornenes with amphiphilic architecture via ring-opening metathesis polymerization[J].Macromolecules,2005,38:3533.
37 Lin T, Chou C, Lin N, et al. End group modification of polynorbornenes[J].Macromolecular Chemistry & Physics,2015,215:2357.
38 Xuan M F. Processing and application of polydicyclo pentadiene RIM products[J].Liming Research Institute of Chemical Industry,1995(5):5(in Chinese).
宣美福.聚双环戊二烯RIM制品的加工与应用[J].黎明化工研究院,1995(5):5.
39 Seehof N, Mehler C, Breunig S, et al. Pd2+,catalyzed addition polymerizations of norbornene and norbornene derivatives[J].Journal of Molecular Catalysis,1992,76(1-3):219.
40Leventis N, Sotiriouleventis C, Mohite D P,et al. Polyimide aerogels by ring-opening metathesis poly merization (ROMP)[J].Chemistry of Materials,2011,23(8):2250.
41Wang C M. Polynorbornenes contain functional side groups were synthesized by ring-opening metathesis polymerization[D].Jinan:Shandong University,2008(in Chinese).
王赐明.采用ROMP的方法合成含有功能侧基的聚降冰片烯[D].济南:山东大学,2008.
42Yao F. Preparation and properties of polynorbornenes by ROMP[D].Changchun:Changchun University of Science and Technology,2015(in Chinese).
姚芬.ROMP法制备降冰片烯类聚合物及其性能研究[D].长春:长春理工大学,2015.
43 Chaimongkolkunasin S, Hou X, Nomura K.Ring opening metathesis polymerization of norbornene and tetracyclododecene with cyclooctene by using (arylimido)vanadium(V)-alkylidene catalyst[J].Journal of Polymer Science Part A Polymer Chemistry,2017,55(18):3067.
44 Liu L, Feng H N, Fu G R, et al. Efficient NIR (near-infrared) luminescent ZnLn-grafted (Ln=Nd, Yb or Er) PNBE (poly(norbornene))[J].Journal of Luminescence,2017,186:23.
45 Allcock H R, Laredo W R, Morford R V. Polymer electrolytes derived from polynorbornenes with pendent cyclophosphazenes: Poly(ethylene glycol) methyl ether (PEGME) derivatives[J].Solid State Ionics,2001,139(1):27.
46 Cui J, Yang J X, Pan L, et al. Synthesis of novel cyclic olefin polymer with high glass transition temperature via ring-opening metathesis polymerization[J].Macromolecular Chemistry & Physics,2016,217:2708.
47 Sun F Y. Patent analysis of fuel cell car technology[J]. Journal of Chongqing University of Technology(Natural Science Edition), 2017,31(1):21(in Chinese).
孙凤艳.燃料电池汽车技术专利态势分析[J].重庆理工大学学报(自然科学版),2017,31(1):21.
48 Zhao Y C, Zhang L J, Xu G F, et al. Synthesis of polymer electrolyte membranes based on poly(norbornene)s functionalized withpendant difluoroalkylsulfonic acids[J].Scientia Sinica,2011,41:1833.
49 Li X, Zhao Y, Feng Z, et al. Ring-openingmetathesis polymerization for the preparationof polynorbornene-based proton exchange membranes with high proton conductivity[J].Journal of Membrane Science,2017,528:55.
50Feng Z M, Zhao Y, Li X, et al. Synthesis and characterization of a novel norbornene based copolymer[J].Journal of Chemical Industry and Engineering,2015,66(s2):439(in Chinese).
冯志明,赵阳,李雪,等.一种新型聚降冰片烯类无规共聚物的合成与表征[J].化工学报,2015,66(s2):439.
51Zhao Y. Preparation and properties of polynorbornenes based on ring-opening metathesispolymerization for proton exchange membranes[D].Beijing:Beijing Institute of Technology,2016(in Chinese).
赵阳.聚降冰片烯质子交换膜的制备及性能研究[D].北京:北京理工大学,2016.
52Zhen L D. Ring-opening metathesis polymerization of norbornene derivatives containing ionic liquids on side chains[D]. Shanghai:East China Normal University,2006(in Chinese).
郑灵娣.侧链含离子液体的降冰片烯类衍生物的开环易位聚合[D].上海:华东师范大学,2006.
53 Zhao Y B, Wang S B, Zhao Y, et al. Preparation of quaternary ammonium functionalized norbornene derivatives anion exchange membrane[J].Journal of Chemical Industry and Engineering,2015,66(s1):338(in Chinese).
赵玉彬,王树博,赵阳,等.降冰片烯类季铵型阴离子交换膜的制备[J].化工学报,2015,66(s1):338.
54 Feng L, Zhao Y B, Xie X F, et al. Preparation of tunable quaternary ammonium functionalized norbornene derivatives anion exchange membrane[J].Journal of Chemical Industry and Engineering(China),2015,66(s2):257(in Chinese).
冯磊,赵玉彬,谢晓峰,等.可控型季铵化降冰片烯衍生物阴离子交换膜的制备[J].化工学报,2015,66(s2):257.
55 He X, Liu J, Zhu H, et al. Novel quaternary ammonium functional addition-type norbornene copolymer as hydroxide-conductive anddurable anion exchange membrane for directmethanol fuel cells[J].RSC Advances,2015,5(78):63215.
56 Watson K J, Zhu J, et al. Hybrid nanoparticles with block copolymer shell structures[J].Journal of the American Chemical Society,2016,121(2):462.
57 Neqal M, Pichavant L, Gauthier M, et al. Plurifunctional polyglycidol-based particles prepared by dispersion ring-opening metathesispolymerization[J].Colloids & Surfaces A Physicochemical & Engineering Aspects,2016,510:254.
58 Jeong W, Kessler M R. Toughness enhancement in ROMP functio-nalized carbon nanotube/polydicyclopentadiene composites[J].Che-mistry of Materials,2008,20(22):7060.
59 Amendt M A, Chen L, Hillmyer M A. Formation of nanostructured poly(dicyclopentadiene) thermosets using reactive block polymers[J].Macromolecules,2015,43(8):3924.
60Xia Y, Boydston A J, Grubbs R H. Synthesis anddirect imaging of ultrahigh molecularweight cyclicbrush polymers[J].AngewandteChemie,2011,123(26):6004.
61Chai W C. Modification and functionalization of halloysite nanotubes via living ring open metathesis polymerization[D].Zhengzhou:Zhengzhou University,2013(in Chinese).
柴文翠.活性开环易位聚合功能化修饰埃洛石纳米管研究[D].郑州:郑州大学,2013.
62Belfield K D, Li Z. Norbornene-functionalized diblock copolymers via ring-opening metathesis polymerization for magnetic nanoparticle stabilization[J].Chemistry of Materials,2006,18(25):5929.
63 Alfred S F, Al-Badri Z M, Madkour A E, et al. Water soluble poly(ethylene oxide) functionalized norbornene polymers[J].Journal of Polymer Science Part A Polymer Chemistry,2008,46(8):2640.
64 Sutthasupa S, Sanda F. Synthesis of diblockcopolymers of indo-methacin/aspartic acid conjugated norbornenes and characterization of their self-assembled nanostructures as drug carriers[J].European Polymer Journal,2016,85:211.
65 Sutthasupa S, Terada K, Sanda F, et al. Ring-opening metathesis polymerization of amino acid-functionalized norbornene derivatives[J].Journal of Polymer Science Part A Polymer Chemistry,2006,44(18):5337.
66 Sutthasupa S, Terada K, Sanda F, et al. Ring-opening metathesis polymerization of amino acid-functionalized norbornene diester mo-nomers[J].Polymer,2007,48(11):3026.
67 Sutthasupa S, Sanda F, Masuda T. Ring-opening metathesis polymerization of amino acid-functionalized norbornene diamide monomers: Polymerization behavior and chiral recognition ability of the polymers[J].Macromolecular Chemistry & Physics,2008,209:930.
68 Baumgartner R, Kuaib D, Cheng J. Synthesis of controlled, high-molecular weight poly(L-glutamic acid) brush polymers[J].Biomaterials Science,2017,5:1836.
69 Tran T H, Nguyen C T, Gonzalezfajardo L,et al. Long circulating self-assembled nanoparticles from cholesterol-containing brush-like block copolymers for improved drug delivery to tumors[J].Biomacromolecules,2014,15(11):4363.
70Manning D D, Hu X, Beck P, et al. Synthesis of sulfated neoglycopolymers: Selective P-selectin inhibitors[J].Journal of the American Chemical Society,1997,119(13):3161.
71Allen M J, Wangkanont K, Raines R T, etal. ROMP from ROMP: A new approach tograft copolymer synthesis[J].Macromolecules,2009,42(12):4023.
72Dong W, Zhang Q P, Du C, et al. Graft copolymers prepared by ring-opening metathesis polymerization of poly(ethylene glycol)-substituted norbornenemacromonomers[J].Journal of Jilin University(Science Edition),2012,50(3):567(in Chinese).
董薇,张秋平,杜创,等.降冰片烯大分子单体开环易位聚合制备PEG取代的接枝共聚物[J].吉林大学学报(理学版),2012,50(3):567.
73 Li K, Xu F, Feng L, et al. Application of ring-opening metathesis polymerization in synthesis of functional macromolecules[J].Chemical Reaction Engineering and Technology,2015,31(6):515(in Chinese).
李凯,徐梵,冯露,等.活性开环移位聚合在制备功能大分子中的应用[J].化学反应工程与工艺,2015,31(6):515.
74 Yang S K, Ambade A V, Weck M. Supramolecular ABC triblock copolymers via one-pot, orthogonal self-assembly[J].Journal of the American Chemical Society,2010,132(5):1637.
75 Watkins D M, Fox M A. Synthesis and photophysical characterization of aryl-substituted polynorbornenediol acetal and ketal multiblock copolymers[J].Macromolecules,2002,28(14):4939.
76 Kang H A, Bronstein H E, Swager T M. Conductive block copolymers integrated intopolynorbornene-derived scaffolds[J].Macromolecules,2008,41(15):5540.
77 He X H, Shi L, Nie H R, et al. Synthesis and addition polymerization of norbornene derivative witha functional group of pendent azobenzene[J].Journal of South China University of Technology(Natural Science Edition),2010,38(9):68(in Chinese).
贺晓慧,石玲,聂华荣,等.5-位含偶氮苯功能基团的降冰片烯衍生物的合成及加成聚合[J].华南理工大学学报(自然科学版),2010,38(9):68.
78 Liaw D J, Wang K L, Lee K R, et al. Ring-opening metathesis polymerization of newnorbornene-based monomers containing various chromophores[J].Journal of Polymer Science Part A Polymer Che-mistry,2007,45(14):3022.
79 Krohm F, Kind J, Savka R, et al. Correction: Photochromic spiropyran-and spirooxazine-homopolymers in mesoporous thin films bysurface initiated ROMP[J].Journal of Materials Chemistry C,2016,4(18):4067.
80Guadagno L, Mariconda A, Agovino A, et al. Protection of graphene supported ROMPcatalyst through polymeric globular shell in self-healing materials[J].Composites Part B:Engineering,2017,116: 352.
81Novoa S, Paquette J A, Barbon S M, et al.Side-chain boron difluoride formazanate polymers via ring-opening metathesis polymerization[J].Journal of Materials Chemistry C,2016,4(18):3987.
82Zhao Y, Zhang K. Thermoresponsive polymers based on ring-ope-ning metathesis polymerization[J].Polymer Chemistry,2016,7:4081.
83 Xie M, Dang J, Han H, et al. Well-defined brush copolymers with high grafting density of amphiphilic side chains by combination of ROP,ROMP,and ATRP[J].Macromolecules,2008,41(41):9004.
[1] 钱鑫, 邓丽芳, 王鲁丰, 单锐, 袁浩然. 二氧化碳电化学还原技术研究进展[J]. 材料导报, 2019, 33(z1): 102-107.
[2] 冉涛, 张骞, 黎邦鑫, 刘旸, 李筠连. g-C3N4/泡沫镍整体式光催化剂的构建及光氧化去除NO[J]. 材料导报, 2019, 33(z1): 337-342.
[3] 关文学, 周键, 王三反, 李艳红. 等离子体技术接枝苯磺酸甜菜碱改性对离子交换膜电阻的影响[J]. 材料导报, 2019, 33(z1): 462-465.
[4] 李鑫, 王欢, 刘立业, 张吉波, 邱俊. 不同方法制备的乙醇胺还原胺化催化剂及其表征[J]. 材料导报, 2019, 33(z1): 466-469.
[5] 罗继永, 张道海, 田琴, 魏柯, 周密, 杨胜都. 无机纳米粒子协同无卤阻燃聚丙烯的研究进展[J]. 材料导报, 2019, 33(z1): 499-504.
[6] 熊德华, 邓砚文, 杜子娟, 张晴晴, 李宏. CuMnO2/TiO2复合光催化剂增效催化降解亚甲基蓝[J]. 材料导报, 2019, 33(8): 1262-1267.
[7] 冯妙, 刘燕, 邓会宁, 王子霞. 层层自组装法制备氧化石墨烯复合单价选择性离子交换膜[J]. 材料导报, 2019, 33(6): 1057-1060.
[8] 周颖, 张道海, 秦舒浩. DOPO衍生物的合成与阻燃应用研究现状[J]. 材料导报, 2019, 33(5): 901-906.
[9] 刘新华, 储兆洋, 李永, 郑宏亮, 方寅春. 含聚甲基丙烯酸二甲氨基乙酯刷的羽毛接枝共聚物的制备及性能[J]. 材料导报, 2019, 33(2): 342-346.
[10] 闫静,田晓,赵宣,赵丽娟,杨艳春,陈均. 储氢合金作为直接硼氢化物燃料电池阳极催化剂的研究进展[J]. 材料导报, 2019, 33(13): 2229-2236.
[11] 施露,张杰,陈蓉,沈美庆,单斌. 锰基多元氧化物的NO催化氧化研究进展[J]. 材料导报, 2019, 33(13): 2167-2173.
[12] 周淑千, 徐卫兵, 周然, 周正发, 马海红, 任凤梅. P(AN-co-MA-co-MMA)@H2O微胶囊/密胺高阻燃泡沫的制备及性能[J]. 材料导报, 2019, 33(12): 2095-2099.
[13] 刘泓吟, 杨宏宇, 陈明凤. 异氰酸酯指数对聚氨酯硬泡阻燃、热稳定性及燃烧性能的影响[J]. 材料导报, 2019, 33(12): 2071-2075.
[14] 马砺, 刘志超, 肖旸, 康付如, 杨昆, 邓军. 含无机阻燃剂硅橡胶泡沫的阻燃及热分解特性研究[J]. 材料导报, 2019, 33(11): 1836-1841.
[15] 张宇, 王敏, 周鑫, 杨光俊, 柴天煜, 朱彤. Bi2MoO6/BiVO4异质结光催化剂的制备及性能[J]. 材料导报, 2019, 33(10): 1597-1601.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed