Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (7): 1151-1157    https://doi.org/10.11896/j.issn.1005-023X.2018.07.016
  材料综述 |
扫描Kelvin探针力显微镜:工作原理及在材料腐蚀研究中的应用
宋博, 陈旭
辽宁石油化工大学石油天然气工程学院,抚顺 113001
Scanning Kelvin Probe Force Microscopy: Working Principle and Application in the Research of Materials Corrosion
SONG Bo, CHEN Xu
College of Petroleum Engineering, Liaoning Shihua University, Fushun 113001
下载:  全 文 ( PDF ) ( 1928KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 扫描Kelvin探针力显微镜(SKPFM)是在原子力显微镜(AFM)的基础上应用扫描Kelvin探针(SKP)技术开发的检测表征手段,它能够在获取材料表面纳米级分辨率形貌的同时,原位得到样品表面高分辨率的接触电势差分布图,为揭示腐蚀反应机理提供了崭新的思路,近年来发展迅速。本文介绍了SKPFM两种工作模式的基本原理,总结了SKPFM在应用中的问题,并讨论了SKPFM和传统扫描Kelvin探针技术(SKP)的优缺点,重点综述了SKPFM在腐蚀科学研究中的应用,最后展望了SKPFM的发展方向与应用前景。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
宋博
陈旭
关键词:  扫描Kelvin探针力显微镜  原子力显微镜  伏打电位差  腐蚀  工作原理    
Abstract: Scanning Kelvin probe force microscopy (SPFKM) is a material measuring and characterizing technique which applies scanning Kelvin probe on the basis of atomic force microscopy (AFM) and has been gaining momentum in recent years. It involves simultaneously the nanometer-level topography measurement and the in-situ high-resolution volta potential mapping, thereby providing a novel insight in investigating the mechanisms of materials’ corrosion behaviours. The present paper sketches out the principles with respect to the two working modes of SKPFM, summarizes the unresolved issues that have emerged in SPFKM’s application, and also renders a comparative discussion between SKPFM and the traditional SKP technique. The review offers an elaborate delineation about the application of SKPFM in corrosion science, and ends with a rough description of the opportunities and challenges.
Key words:  scanning Kelvin probe force microscopy    atomic force microscopy    volta potential difference    corrosion    working principle
               出版日期:  2018-04-10      发布日期:  2018-05-11
ZTFLH:  TG174.3  
基金资助: 国家自然科学基金(51201009);辽宁省自然科学基金(2013020078)
通讯作者:  陈旭:通信作者,女,1974年生,教授,主要从事金属材料腐蚀与防护研究 E-mail:469428642@qq.com   
作者简介:  宋博:男,1991年生,硕士研究生,主要从事金属材料腐蚀与防护研究
引用本文:    
宋博, 陈旭. 扫描Kelvin探针力显微镜:工作原理及在材料腐蚀研究中的应用[J]. 《材料导报》期刊社, 2018, 32(7): 1151-1157.
SONG Bo, CHEN Xu. Scanning Kelvin Probe Force Microscopy: Working Principle and Application in the Research of Materials Corrosion. Materials Reports, 2018, 32(7): 1151-1157.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.07.016  或          http://www.mater-rep.com/CN/Y2018/V32/I7/1151
1 Binnig G, Rohrer H. Scanning tunneling microscopy[J].Helvetica Physica Acta,1982,55:726.
2 Binnig G, Quate C F, Gerber C H, et al. Atomic force microscope[J].Physical Review Letters,1986,56:930.
3 Baykara M Z, Schwarz U D. Atomic force microscopy: Methods and applications[M]∥Lindon J,Tranter G,Koppenaal D W.Encyclopedia of spectroscopy and spectrometry.3rd ed.Oxford:Academic Press,2017:70.
4 Nonnenmacher M, O’Boyle M P, Wickramasinghe H K. Kelvin probe force microscopy[J].Applied Physical Letters,1991,58:2921.
5 Kelvin L V.Contact electricity of metals[J].The London, Edinburgh, Dublin Philosophical Magazine and Journal of Science, 1898,46:82.
6 Zisman W A. A new method of measuring contact potential[J].Review of Scientific Instruments,1932,3:367.
7 Schmutz P, Frankel G S. Characterization of AA2024-T3 by scanning kelvin probe force microscopy[J].Journal of The Electrochemical Society,1998,145:2285.
8 Schmutz P, Frankel G S. Corrosion study of AA2024-T3 by scanning kelvin probe force microscopy and in situ atomic force microscopy scratching[J].Journal of The Electrochemical Society,1998,145:2295.
9 García R, Pérez R. Dynamic atomic force microscopy methods[J].Surface Science Reports,2002,47:197.
10Hölscher H, Ebeling D, Schmutz J E, et al. Dynamic force microscopy and spectroscopy using the frequency-modulation technique in air and liquids[M]∥Bhushan B. Scanning probe microscopy in nanoscience and nanotechnology.Berlin Heidelberg:Springer-Verlag,2010:3.
11Sadewasser S, Glatzel T. Kelvin probe force microscopy[M].Berlin Heidelberg:Springer-Verlag,2012.
12Mélin T, Zdrojek M, Brunel D. Electrostatic force microscopy and kelvin force microscopy as a probe of the electrostatic and electronic properties of carbon nanotubes[M]∥Bhushan B.Scanning probe microscopy in nanoscience and nanotechnology.Berlin Heidelberg:Springer-Verlag,2010:89.
13 Luo D, Sun H, Yan L. Kelvin probe force microscopy in nanoscience and nanotechnology[M]∥Kumar C.Surface science tools for nanomaterials characterization.Berlin Heidelberg:Springer-Verlag,2015:117.
14 Melitz W, Shen J, Kummel A C, et al. Kelvin probe force microscopy and its application[J].Surface Science Reports,2011,66:1.
15 Glatzel T, Sadewasser S, Lux-Steiner M C. Amplitude or frequency modulation-detection in Kelvin probe force microscopy[J].Applied Surface Science,2003,210:84.
16 Moores B, Hane F, Eng L, et al. Kelvin probe force microscopy in application to biomolecular films:Frequency modulation, amplitude modulation, and lift mode[J].Ultramicroscopy,2010,110:708.
17 Sadeghi A, Baratoff A, Ghasemi A, et al. Multiscale approach for simulations of kelvin probe force microscopy with atomic resolution[J].Physical Review B,2012,86:075407.
18 Rohwerder M,Turcu F. High-resolution Kelvin probe microscopy in corrosion science: Scanning Kelvin probe force microscopy (SKPFM) versus classical scanning Kelvin probe (SKP)[J].Electrochimica Acta,2007,53:290.
19 Stratmann M, Streckel H. On the atmospheric corrosion of metals which are covered with thin electrotype layers-Ⅰ.Verifaction of the experimental technique[J].Corrosion Science,1990,30:681.
20Stratmann M, Streckel H. On the atmospheric corrosion of metals which are covered with thin electrotype layers-Ⅱ.Experimental results[J].Corrosion Science,1990,30:697.
21Stratmann M, Streckel H, Kim K T, et al. On the atmospheric corrosion of metals which are covered with thin electrotype layers-Ⅲ.The measurement of polarisation curve on metal surface which are covered by thin electrotype layers[J].Corrosion Science,1990,30:715.
22Cook A B, Barrett Z, Lyon S B, et al. Calibration of the scanning Kelvin probe force microscope under controlled environmental conditions[J].Electrochimica Acta,2012,66:100.
23 Guo L Q, Zhao X M, Bai Y, et al. Water adsorption behavior on metal surfaces and its influence on surface potential studied by in situ SPM[J].Applied Surface Science,2012,258:9087.
24 Guo L Q, Zhao X M, Wang B C, et al. The initial stage of atmospheric corrosion on interstitial free steel investigated by in situ SPM[J].Applied Surface Science,2013,70:188.
25 Örnek C, Engelberg D L. SKPFM measured Volta potential correlated with strain localisation in microstructure to understand corrosion susceptibility of cold-rolled grade 2205 duplex stainless steel[J].Corrosion Science,2015,99:164.
26 Jönsson M, Thierry D, Lebozec N. The influence of microstructure on the corrosion behaviour of AZ91D studied by scanning Kelvin probe force microscopy and scanning Kelvin probe[J].Corrosion Science,2006,48:1193.
27 Wang J,Wang S Q. Correlation between galvanic corrosion and electronic work function of Al alloy surfaces[J].Acta Physico-Chimica Sinica,2014,30(3):551(in Chinese).
王健,王绍青.铝合金表面电偶腐蚀与电子功函数的关系[J].物理化学学报,2014,30(3):551.
28 Guo L Q, Li M, Shi X L, et al. Effect of annealing temperature on the corrosion behavior of duplex stainless steel studied by in situ techniques[J].Corrosion Science,2011,53:3733.
29 Guo L Q, Bai Y, Xu B Z, et al. Effect of hydrogen on pitting susceptibility of 2507 duplex stainless steel[J].Corrosion Science,2013,70:140.
30Sathirachinda N, Pettersson R, Pan J. Depletion effects at phase boundaries in 2205 duplex stainless steel characterized with SKPFM and TEM/EDS[J].Corrosion Science,2009,51:1850.
31Sathirachinda N, Pettersson R, Wessman S, et al. Scanning Kelvin probe force microscopy study of chromium nitrides in 2507 super duplex stainless steel—Implications and limitations[J].Electrochimica Acta,2011,56:1792.
32Zheng S, Li C, Qi Y, et al. Mechanism of (Mg,Al,Ca)-oxide inclusion-induced pitting corrosion in 316L stainless steel exposed to sulphur environments containing chloride ion[J].Corrosion Science,2013,67:20.
33 Mallinson C F, Harvey A, Watts J F. The nobility of second phase particles in S-65 beryllium studied by scanning Kelvin probe force microscopy[J].Corrosion Science,2016,112:669.
34 Senöz C, Rohwerder M. Scanning Kelvin probe force microscopy for the in situ observation of the direct interaction between active head and intermetallic particles in filiform corrosion on aluminium alloy[J].Electrochimica Acta,2011,56:9588.
35 Senöz C, Borodin S, Stratmann M, et al. In situ detection of diffe-rences in the electrochemical activity of Al2Cu IMPs and investigation of their effect on FFC by scanning Kelvin probe force microscopy[J].Corrosion Science,2012,58:307.
36 Senöz C, Evers S, Stratmann M, et al. Scanning Kelvin probe as a highly sensitive tool for detecting hydrogen permeation with high local resolution[J].Electrochemistry Communications,2011,13:1542.
37 Li M, Guo L Q, Qiao L J, et al. The mechanism of hydrogen-induced pitting corrosion in duplex stainless steel studied by SKPFM[J].Corrosion Science,2012,60:76.
38 Wang G, Yan Y, Yang X, et al. Investigation of hydrogen evolution and enrichment by scanning Kelvin probe force microscopy[J].Electrochemistry Communications,2013,35:100.
39 Tarzimoghadam Z, Rohwerder M, Merzlikin S V, et al. Multi-scale and spatially resolved hydrogen mapping in a Ni-Nb model alloy reveals the role of the d phase in hydrogen embrittlement of alloy 718[J].Acta Materialia,2016,109:69.
40Koyama M, Bashir A, Rohwerder M, et al. Spatially and Kinetically resolved mapping of hydrogen in a twinning-induced plasticity steel by use of scanning Kelvin probe force microscopy[J].Journal of The Electrochemical Society,2015,162:C638.
41Polak L, Wijngaarden R J. Preventing probe induced topography correlated artifacts in Kelvin probe force microscopy[J].Ultramicroscopy,2016,171:158.
42Sadewasser S, Leendertz C, Streicher F, et al. The influence of surface topography on Kelvin probe force microscopy[J].Nanotechnology,2009,20:505503.
43 Golek F, Mazur P, Ryszka Z, et al. AFM image artifacts[J].Applied Surface Science,2014,304:11.
44 Souza T G F, Ciminelli V S T, Mohallem N D S. An assessment of errors in sample preparation and data processing for nanoparticle size analyses by AFM[J].Materials Characterization,2015,109:198.
45 Liscio A, Palermo V, Muüllen K, et al. Tip-sample interactions in Kelvin probe force microscopy: Quantitative measurement of the local surface potential[J].Journal of Physical Chemistry C,2008,112:17368.
46 Sathirachinda N, Pettersson R, Wessman S, et al. Study of nobility of chromium nitrides in isothermally aged duplex stainless steels by using SKPFM and SEM/EDS[J].Corrosion Science,2010,52:179.
47 Wicinski M, Burgstaller W, Hassel A W. Lateral resolution in scanning Kelvin probe microscopy[J].Corrosion Science,2016,104:1.
48 Lzquierdo J, Fernández-Pérez B M, Martín-Ruíz L, et al. Evaluation of the corrosion protection of steel by anodic processing in metasilicate solution using the scanning vibrating electrode technique[J].Electrochimica Acta,2015,178:1.
49 Xue M S, Xie J, Li W, et al. Characterization of interfacial strength of dissimilar metallic joints using a scanning Kelvin probe[J].Scripta Materialia,2012,66:265.
50Ma H C, Liu Z Y, Du C W, et al. Stress corrosion cracking of E690 steel as a welded joint in a simulated marine atmosphere containing sulphur dioxide[J].Corrosion Science,2015,100:627.
51Bettini E, Kivisäkk U, Leygraf C, et al. Study of corrosion behavior of a 22% Cr duplex stainless steel:Influence of nano-sized chromium nitrides and exposure temperature[J].Electrochimica Acta,2013,113:280.
52Buzolin R H, Mohedano M, Mendis C L, et al. As cast microstructures on the mechanical and corrosion behaviour of ZK40 modified with Gd and Nd additions[J].Materials Science and Engineering A,2017,682:238.
[1] 岳慧芳, 冯可芹, 庞华, 张瑞谦, 李垣明, 吕亮亮, 赵艳丽, 袁攀. 粉末冶金法烧结制备SiC/Zr耐事故复合材料的研究[J]. 材料导报, 2019, 33(z1): 321-325.
[2] 路小彬. 基于嵌段共聚物的硅表面聚合物刷点阵组装[J]. 材料导报, 2019, 33(z1): 505-509.
[3] 张政, 刘标, 高延敏. 端乙烯基硅氧烷对水性丙烯酸树脂的改性[J]. 材料导报, 2019, 33(z1): 519-522.
[4] 万晔, 刘晶, 谭丽丽, 陈军修, 东家慧, 杨柯. 镁粉表面钙磷涂层的制备与性能[J]. 材料导报, 2019, 33(z1): 283-287.
[5] 王一唱, 曹玲飞, 吴晓东, 邹衍, 黄光杰. 石油钻杆用7xxx系铝合金微观组织和性能的研究进展[J]. 材料导报, 2019, 33(7): 1190-1197.
[6] 马晓波, 王进卿, 池作和, 张光学, 詹明秀. h-BN基复合陶瓷涂层防锅炉受热面的硫酸盐腐蚀性能[J]. 材料导报, 2019, 33(6): 960-964.
[7] 温变英, 段磊. PEI/Ni梯度电磁屏蔽薄膜材料耐腐蚀性研究[J]. 材料导报, 2019, 33(6): 1065-1069.
[8] 宋雨来, 付洪德, 王震, 杨鹏聪. 镁合金的应力腐蚀开裂:机理、影响因素、防护技术[J]. 材料导报, 2019, 33(5): 834-840.
[9] 张潇华, 于思荣, 郭丽娟, 周扬理. 硅含量对Al-Si-Cu相变储能材料腐蚀性的影响[J]. 材料导报, 2019, 33(4): 582-585.
[10] 方振邦, 张志强, 李颖, 尹华, 邢艳双, 何长树. 7N01S-T5铝合金厚板搅拌摩擦焊接头的晶间腐蚀行为[J]. 材料导报, 2019, 33(2): 304-308.
[11] 周亮, 陈送义, 彭振凌, 张星临, 范淑敏, 昌江郁, 袁丁玲, 陈康华1,2,3. 微量Co对7056铝合金组织与腐蚀性能的影响[J]. 材料导报, 2019, 33(2): 314-320.
[12] 钟晓聪, 陈芳会, 王瑞祥, 徐志峰. 硫酸体系铅基阳极稳定性研究进展[J]. 材料导报, 2019, 33(17): 2862-2867.
[13] 靳文豪, 邢保英, 何晓聪, 曾凯, 余康. 不同腐蚀环境下铝合金自冲铆接头静力学性能研究[J]. 材料导报, 2019, 33(16): 2725-2728.
[14] 卞贵学, 陈跃良, 张勇, 王安东, 王哲夫. 基于电偶腐蚀仿真的铝/钛合金在不同浓度酸性NaCl溶液中与水介质中的当量折算系数[J]. 材料导报, 2019, 33(16): 2746-2752.
[15] 周治文, 江旭东, 黄朴, 陈孝阳, 韦德满, 许征兵. 高速电弧喷涂FeAlCrTiC涂层组织结构及耐磨、耐腐蚀性能[J]. 材料导报, 2019, 33(16): 2771-2776.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed