Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (7): 1114-1121    https://doi.org/10.11896/j.issn.1005-023X.2018.07.011
  材料综述 |
伽马射线辐照改性聚丙烯腈原丝及聚丙烯腈基碳纤维的研究进展
冯婷婷, 刘梁森, 马天帅, 徐志伟, 李静, 傅宏俊, 匡丽赟, 李英琳
天津工业大学纺织学院,先进纺织复合材料教育部重点实验室,天津 300387
Enhancing Polyacrylonitrile Precursor Fibers and Polyacrylonitrile-based Carbon Fibers via Gamma-irradiation: a Review
FENG Tingting, LIU Liangsen, MA Tianshuai, XU Zhiwei, LI Jing, FU Hongjun, KUANG Liyun, LI Yinglin
Key Laboratory of Advanced Braided Composites, School of Textiles, Tianjin Polytechnic University, Tianjin 300387
下载:  全 文 ( PDF ) ( 1776KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 聚丙烯腈(PAN)基碳纤维由于性能优异、制备工艺简单,被广泛应用于各产业,但其存在表面化学惰性强、力学性能仍有很大提升空间等问题,为此研究人员提出了多种改性方法。其中,γ射线辐照是一种能够实现碳纤维表面活性和力学性能协同提高的改性方法,并且能够应用于PAN基碳纤维制备(PAN原丝)及其后处理全过程。本文概述了γ辐照对PAN原丝和PAN基碳纤维的微观结构、表界面性能和力学性能等方面的影响,重点总结了γ辐照下PAN原丝分子结构的演化机制,原丝辐照对成品碳纤维力学性能的影响,γ辐照下碳纤维不同微区结构演化和力学性能的关系,展望了未来γ射线辐照改性PAN基碳纤维的发展方向与前景。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
冯婷婷
刘梁森
马天帅
徐志伟
李静
傅宏俊
匡丽赟
李英琳
关键词:  碳纤维  γ射线辐照  聚丙烯腈纤维  力学性能    
Abstract: The polyacrylonitrile (PAN)-based carbon fibers have found wide application in a diverse variety of industries because of their superb performance and the facile preparation technique, while nevertheless been suffering many problems such as the extreme surface chemical inertness and the imperfect mechanical performance. This urges intensive research endeavors which have bred various modification methods to enhance the PAN-based carbon fibers. Among these methods, the γ-irradiation treatment is effective to achieve the synergetic improvement in both of the surface activities and the mechanical performance, and meanwhile can be applied to the preparation of PAN precursor fibers and the subsequent treatment process. The present paper aims to provide an overview of the γ-irradiation treatment for PAN precursor fibers and PAN-based carbon fibers, from several facets including the induced changes in the fibers’ crystalline structure, surface and interfacial properties, and mechanical properties. We make emphasis on the evolutionary course of the γ-ray-induced cross-linking of PAN precursor fiber molecules, the impact of precursor γ-irradiation to mechanical properties of the final carbon fibers, and the relationship between product’s different microzone structure evolution and mechanical properties under γ-irradiation. The review ends with a delineation of the development direction and the future prospect for this emerging technique.
Key words:  carbon fiber    γ-irradiation    polyacrylonitrile fibers    mechanical performance
               出版日期:  2018-04-10      发布日期:  2018-05-11
ZTFLH:  TQ342+.31  
基金资助: 国家自然科学基金(U1533123;11575126);天津市自然基金(16JCYBJC17700)
通讯作者:  徐志伟:通信作者,男,教授,博士研究生导师,研究方向为碳纤维复合材料结构设计 E-mail:xuzhiwei@tjpu.edu.cn   
作者简介:  冯婷婷:女,1992年生,硕士研究生,研究方向为γ辐照碳纤维改性 E-mail:571052694@qq.com
引用本文:    
冯婷婷, 刘梁森, 马天帅, 徐志伟, 李静, 傅宏俊, 匡丽赟, 李英琳. 伽马射线辐照改性聚丙烯腈原丝及聚丙烯腈基碳纤维的研究进展[J]. 《材料导报》期刊社, 2018, 32(7): 1114-1121.
FENG Tingting, LIU Liangsen, MA Tianshuai, XU Zhiwei, LI Jing, FU Hongjun, KUANG Liyun, LI Yinglin. Enhancing Polyacrylonitrile Precursor Fibers and Polyacrylonitrile-based Carbon Fibers via Gamma-irradiation: a Review. Materials Reports, 2018, 32(7): 1114-1121.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.07.011  或          http://www.mater-rep.com/CN/Y2018/V32/I7/1114
1 Zhang J J. Market and development of carbon fiber at home and abroad[J].Chemical Techno-Economics,2005,23(4):12(in Chinese).
张家杰.国内外碳纤维生产现状及发展趋势[J].化工技术经济,2005,23(4):12.
2 Lou Y F. The new situation of carbon fiber and new technology[J].New Carbon Materials,1995(4):13(in Chinese).
罗益锋.炭纤维的新形势与新技术[J].新型炭材料,1995(4):13.
3 Kobets L P, Deev I S. Carbon fibers:Structure and mechanical pro-perties of carbon fibers[J].Carbon,1998,36(4):345.
4 张开.粘合与密封材料[M].北京:化学工业出版社,1996.
5 Yu M, Xu Y, Wang C, et al. Heredity and difference of multiple-scale microstructures in PAN-based carbon fibers and their precursor fibers[J].Journal of Applied Polymer Science,2012,125(4):3159.
6 Jiang J, Yao X, Xu C, et al. Influence of electrochemical oxidation of carbon fiber on the mechanical properties of carbon fiber/graphene oxide/epoxy composites[J].Composites:Part A,2017,95:248.
7 Sun Y H T. Wettability modification of polyacrylonitrile (PAN)-based high modulus carbon fibers with epoxy resin by low temperature plasma[J].Journal of Adhesion,2013,89(3):192.
8 Xu Z, Huang Y, Min C, et al. Effect of γ-ray radiation on the polya-crylonitrile-based carbon fibers[J].Radiation Physics & Chemistry,2010,79(8):839.
9 Shin H K, Park M, Kim H Y, et al. An overview of new oxidation methods for polyacrylonitrile-based carbon fibers[J].Carbon Letters,2015,16(1):11.
10Jiao M L, Yu L W, Xiao R, et al. Behavior of electro responsive HPAN/SPI hydrogel fibers under an electric stimulus[J].Chinese Journal of Materials Research,2005,19(6):663(in Chinese).
焦明立,俞力为,肖茹,等.水解聚丙烯腈/大豆分离蛋白凝胶纤维的电刺激性能[J].材料研究学报,2005,19(6):663.
11Zhang Y H. Production technology of fire-retardant polyacrylonitrile fiber[J].China Textile Leader,2002(2):23(in Chinese).
张玉海.阻燃聚丙烯腈纤维生产技术[J].现代纺织技术,2002(2):23.
12Tan L, Wan A. Structural changes of polyacrylonitrile precursor fiber induced by γ-ray irradiation[J].Materials Letters,2011,65(19):3109.
13 Ji J Q. The effect of γ-ray irradiation of polyacrylonitrile fibers on oxidation and carbonization processes[D].Shanghai:Donghua University,2013(in Chinese).
季加强.辐照改性聚丙烯腈纤维对预氧化碳化的影响[D].上海:东华大学,2013.
14 Gao Y J. Structure of irradiated PAN original fiber and the influence on pre-oxidation process[D].Beijing:Beijing University of Chemical Technology,2015(in Chinese).
高益军.辐照PAN原丝结构及其对预氧化进程的影响[D].北京:北京化工大学,2015.
15 Liu W, Wang M, Xing Z, et al. Radiation-induced crosslinking of polyacrylonitrile fibers and the subsequent regulative effect on the preoxidation process[J].Radiation Physics & Chemistry,2012,81:622.
16 Zhao W, Yukio Yamamoto A, Tagawa S. Regulation of the thermal reactions of polyacrylonitrile by γ-irradiation[J].Chemistry of Materials,1999,11(4):1030.
17 Zhou L, Lu Y, Zhao W, et al. Effects of gamma ray irradiation on poly(acrylonitrile-co-methyl acrylate) fibers[J].Polymer Degradation & Stability,2015,128:149.
18 Zhao W, Lu Y, Jiang J, et al. The effect of γ-ray irradiation on the microstructure and thermal properties of polyacrylonitrile fibers[J].RSC Advances,2015,5(30):23508.
19 Ji J Q,Lv Y G,Zhao W Z. Effect of γ-ray irradiation on polyacrylonitrile precursor and its preoxidation process[J].Synthetic Fiber Industry,2013,36(6):1(in Chinese).
季加强,吕永根,赵卫哲.γ射线辐照对聚丙烯腈原丝及其预氧化反应的影响[J].合成纤维工业,2013,36(6):1.
20Liu S, Liu R, Han K, et al. Influence of γ-ray irradiation on structure and properties of PAN precursor fibers[J].Polymer Engineering & Science,2016,56(11):1313.
21Liu W H,Wang M H,Zhang W F, et al. Effect of γ-ray irradiation on the pre-oxidation of polyacrylonitrile fibers[J].Polymer Materials Science & Engineering,2015(5):51(in Chinese).
刘伟华,王谋华,张文发,等.γ射线辐照处理对聚丙烯腈纤维预氧化反应的影响[J].高分子材料科学与工程,2015(5):51.
22Tarakanov B M. Effect of γ-radiation on the structure and thermal properties of polyacrylonitrilefibres[J].Fibre Chemistry,1996,30(3):123.
23 Zhai J. Effect of PAN precursor modification on the structure and performance of preoxidized fibers[D].Shanghai:Donghua University,2011(in Chinese).
翟佳.原丝改性对PAN预氧化纤维结构和性能的影响[D].上海:东华大学,2011.
24 Zhao W, Lu Y, Zhou L, et al. Effects on the oriented structure and mechanical properties of carbon fibers by pre-irradiating polyacrylonitrile fibers with γ ray[J].Journal of Materials Science,2016,51(15):7073.
25 Li J Q, Huang Y D, Wang Z, et al. The effect on carbon fiber surface structure and tensile strength irradiated by γ-ray[J].Journal of Aeronautical Materials,2005,25(6):52(in Chinese).
李峻青,黄玉东,王卓,等.γ-射线辐照对碳纤维表面结构以及强度的影响[J].航空材料学报,2005,25(6):52.
26 Xiao H, Lu Y, Wang M, et al. Effect of gamma-irradiation on the mechanical properties of polyacrylonitrile-based carbon fiber[J].Carbon,2013,52(2):427.
27 Xu Z, Huang Y, Zhang C, et al. Influence of rare earth treatment on interfacial properties of carbon fiber/epoxy composites[J].Materials Science & Engineering A,2007,444(1):170.
28 Li B, Feng Y, Qian G, et al. The effect of gamma ray irradiation on PAN-based intermediate modulus carbon fibers[J].Journal of Nuc-lear Materials,2013,443(1):26.
29 Cataldo F, Cataldo F. A Raman study on radiation-damaged graphite by γ-rays[J].Carbon,2000,38(4):634.
30Liu L, Wu F, Yao H, et al. Investigation of surface properties of pristine and γ-irradiated PAN-based carbon fibers: Effects of fiber instinct structure and radiation medium[J].Applied Surface Science,2015,337(11):241.
31Xu Y J, Li J Q, Jiang L L, et al. The effect of carbon fiber after γ-ray irradiation on the mechanical properties of its composite[J].Synthetic Materials Aging and Application,2006,35(4):31(in Chinese).
徐用军,李峻青,姜琳琳,等.γ-射线辐照碳纤维对其复合材料力学性能的影响[J].合成材料老化与应用,2006,35(4):31.
32Xu Z, Huang Y, Zhang C, et al. Effect of γ-ray irradiation grafting on the carbon fibers and interfacial adhesion of epoxy composites[J].Composites Science & Technology,2007,67(15-16):3261.
33 Zhang H, Zhang Z. Comparison of short carbon fibre surface treatments on epoxy composites: Ⅱ. Enhancement of the wear resistance[J].Composites Science & Technology,2004,64(13-14):2021.
34 Kalantar J, Drzal L T. The bonding mechanism of aramid fibres to epoxy matrices[J].Journal of Materials Science,1990,25(10):4186.
35 Li J, Huang Y, Xu Z, et al. High-energy radiation technique treat on the surface of carbon fiber[J].Materials Chemistry & Physics,2005,94(2-3):315.
36 Tiwari S, Bijwe J, Panier S. Gamma radiation treatment of carbon fabric to improve the fiber-matrix adhesion and tribo-performance of composites[J].Wear,2011,271(9-10):2184.
37 Tiwari S, Bijwe J, Panier S. Polyetherimide composites with gamma irradiated carbon fabric: Studies on abrasive wear[J].Wear,2011,270(9-10):688.
38 Ma H Y, Huang Y D, Zhang Z Q, et al. Effect of Co60 gamma ray irradiation for carbon fibre on interfacial properties in epoxy resin composites[J].Materials Science &Technology,2002,18(12):1585.
39 Ma H Y, Huang Y D, Zhang Z Q. The effect of γ-ray radiating carbon fiber on interfacial property of composite[J].Journal of Materials Engineering,2000(4):26(in Chinese).
马恒怡,黄玉东,张志谦.碳纤维γ射线辐照处理对其复合材料界面性能的影响[J].材料工程,2000(4):26.
40Sui X, Xu Z, Hu C, et al. Microstructure evolution in γ-irradiated carbon fibers revealed by a hierarchical model and Raman spectra from fiber section[J].Composites Science & Technology,2016,130:46.
41Bennett S C, Johnson D J. Electron-microscope studies of structural heterogeneity in PAN-based carbon fibres[J].Carbon,1979,17:25.
42Guo X, Zhang K, Fan Z, et al. Study on microstructure of transition zone and its strong contrast of single T700 carbon fibers[J].Applied Surface Science,2017,406:274.
43 Guo X, Cheng Y, Fan Z, et al. New insights into orientation distribution of high strength polyacrylonitrile-based carbon fibers with skin-core structure[J].Carbon,2016,109:444.
44 Oku T, Imamura Y, Kurumada A, et al. Effect of neutron irradiation on the microstructures and tensile properties of different carbon fibers[J].Science Reports of the Research Institutes,1997,45:63.
45 Li J Q, Xu Y J, Zhang H Z. Effect of γ-ray irradiation on the mechanical property of carbon fiber reinforced composite[J].Synthetic Fiber,2006,35(11):20(in Chinese).
李峻青,徐用军,张怀志.γ-射线辐照对碳纤维及其复合材料力学性能的影响[J].合成纤维,2006,35(11):20.
[1] 刘印, 王昌, 于振涛, 盖晋阳, 曾德鹏. 医用镁合金的力学性能研究进展[J]. 材料导报, 2019, 33(z1): 288-292.
[2] 张长亮, 卢一平. 氮元素对Ti2ZrHfV0.5Mo0.2高熵合金组织及力学性能的影响[J]. 材料导报, 2019, 33(z1): 329-331.
[3] 晁代义, 徐仁根, 孙有政, 赵巍, 吕正风, 程仁策, 邵文柱. 850 ℃时效处理对2205双相不锈钢组织与力学性能的影响[J]. 材料导报, 2019, 33(z1): 369-372.
[4] 任秀秀, 朱一举, 赵省向, 韩仲熙, 姚李娜. 四种含能晶体微观力学性能与摩擦性能的关系[J]. 材料导报, 2019, 33(z1): 448-452.
[5] 薛晓武, 王新闻, 刘红波, 卿宁. 水性聚碳酸酯型聚氨酯的制备及性能[J]. 材料导报, 2019, 33(z1): 488-490.
[6] 杨康, 赵为平, 赵立杰, 梁宇, 薛继佳, 梅莉. 固化湿度对复合材料层合板力学性能的影响与分析[J]. 材料导报, 2019, 33(z1): 223-224.
[7] 平学龙, 符寒光, 孙淑婷. 激光熔覆制备硬质颗粒增强镍基合金复合涂层的研究进展[J]. 材料导报, 2019, 33(9): 1535-1540.
[8] 薛翠真, 申爱琴, 郭寅川. 基于孔结构参数的掺CWCPM混凝土抗压强度预测模型的建立[J]. 材料导报, 2019, 33(8): 1348-1353.
[9] 孙娅, 吴长军, 刘亚, 彭浩平, 苏旭平. 合金元素对CoCrFeNi基高熵合金相组成和力学性能影响的研究现状[J]. 材料导报, 2019, 33(7): 1169-1173.
[10] 李响, 毛萍莉, 王峰, 王志, 刘正, 周乐. 长周期有序堆垛相(LPSO)的研究现状及在镁合金中的作用[J]. 材料导报, 2019, 33(7): 1182-1189.
[11] 郭丽萍, 谌正凯, 陈波, 杨亚男. 生态型高延性水泥基复合材料的可适性设计理论与可靠性验证Ⅰ:可适性设计理论[J]. 材料导报, 2019, 33(5): 744-749.
[12] 赵立臣, 谢宇, 张喆, 王铁宝, 王新, 崔春翔. ZnO纳米棒/多孔锌泡沫的制备及其压缩和抗菌性能[J]. 材料导报, 2019, 33(4): 577-581.
[13] 何秀兰, 杜闫, 巩庆东, 郑威, 柳军旺. 凝胶-发泡法制备多孔Al2O3陶瓷及其力学性能[J]. 材料导报, 2019, 33(4): 607-610.
[14] 赵雪妮, 杨建军, 何富珍, 张黎, 王瑶, 张伟刚, 刘庆瑶. 碳纤维表面处理及熔盐电镀Al涂层的研究[J]. 材料导报, 2019, 33(4): 674-677.
[15] 董天顺, 郑晓东, 李国禄, 王海斗, 周秀锴, 李亚龙. 大气等离子喷涂Fe基涂层及其氩弧重熔层的组织与力学性能[J]. 材料导报, 2019, 33(4): 678-683.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed