Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (7): 1094-1099    https://doi.org/10.11896/j.issn.1005-023X.2018.07.008
  材料综述 |
pH响应性光子晶体
陈可, 马会茹
武汉理工大学化学化工与生命科学学院,武汉 430070
pH-Responsive Photonic Crystals
CHEN Ke, MA Huiru
School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070
下载:  全 文 ( PDF ) ( 1839KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 响应性光子晶体(Responsive photonic crystals,RPCs)具有无毒、无标记、低消耗和裸眼可视的优点,pH响应性光子晶体(pH-RPCs)为食品安全、生物医药、水体环境等领域提供了一种简便的检测方式。目前主要发展了胶体粒子组装体/反蛋白石、层状堆叠和全息三种结构类型的pH-RPCs。本文在介绍光子晶体(Photonic crystals,PCs)pH响应原理的基础上,从制备方法、结构特点和pH响应性能(如灵敏度、响应时间、可视化)等方面对上述pH-RPCs进行了详细的综述,分析总结了它们各自的优势和不足,并对其未来的发展进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈可
马会茹
关键词:  响应性光子晶体(RPCs)  结构色  pH  响应性能    
Abstract: Responsive photonic crystals(RPCs) provide a simple, non-toxic, label-free and low-cost approach to the visualized pH detection in the fields of food safety, biological medicine and water protection. The already-developed pH-responsive photonic crystals(pH-RPCs) mainly include three structural types, i.e. colloidal particles assembled structure or inverse opal, layered stacking and holography. This review illustrated the working principle of pH response of photonic crystals (PCs), and subsequently offers elaborate descriptions about the preparation methods, structural features and response performance including sensitivity, response time and readability with respect to the above mentioned pH-RPCs. It ends with a summary of the pH-RPCs’ advantages and disadvantages, as well as a rough prospect for the future development trend.
Key words:  responsive photonic crystals (RPCs)    structural colors    pH    response performance
               出版日期:  2018-04-10      发布日期:  2018-05-11
ZTFLH:  O652  
基金资助: 国家自然科学基金(51573144;51303143);中央高校基本科研业务费专项资金资助项目(2017III028)
通讯作者:  马会茹:通信作者,女,1973年生,博士,副教授,研究方向为响应性光子晶体及其光学器件 E-mail:mahr@whut.edu.cn   
作者简介:  陈可:女,1992年生,硕士,研究方向为光子晶体传感器 E-mail:cocock17@163.com
引用本文:    
陈可, 马会茹. pH响应性光子晶体[J]. 《材料导报》期刊社, 2018, 32(7): 1094-1099.
CHEN Ke, MA Huiru. pH-Responsive Photonic Crystals. Materials Reports, 2018, 32(7): 1094-1099.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.07.008  或          http://www.mater-rep.com/CN/Y2018/V32/I7/1094
1 Yan Q F, Wang L K, Zhao X S. Artificial defect engineering in three-dimensional colloidal photonic crystals[J].Advanced Functio-nal Materials,2007,17(18):3695.
2 Zhao Y Z, Zhao X W, Gu Z Z. Photonic crystals in bioassays[J].Advanced Functional Materials,2010,20(18):2970.
3 Song Y J, Wei W L, Qu X G. Colorimetric biosensing using smart materials[J].Advanced Materials,2011,23(37):4215.
4 Zhao Y J, Xie Z Y, Gu H C, et al. Bio-inspired variable structural color materials[J].Chemical Society Reviews,2012,41(8):3297.
5 Aguirre C I, Reguera E, Stein A. Tunable colors in opals and inverse opal photonic crystals[J].Advanced Functional Materials,2010,20(16):2565.
6 Leiner M J P. Luminescence chemical sensors for biomedical applications: Scope and limitations[J].Analytica Chimica Acta,1991,255(2):209.
7 Nair R V, Vijaya R. Photonic crystal sensors: An overview[J].Progress in Quantum Electronics,2010,34(3):89.
8 Li M Z, Song Y L. High effective sensors based on photonic crystals[J].Frontiers of Chemistry in China,2010,5(2):115.
9 Ge J P, Yin Y D. Responsive photonic crystals[J].Angewandte Chemie,2011,50(7):1492.
10Hui W, Zhang K Q. Photonic crystal structures with tunable structure color as colorimetric sensors[J].Sensors,2013,13(4):4192.
11Fenzl C, Hirsch T, Wolfbeis O S. Photonic crystals for chemical sensing and biosensing[J].Angewandte Chemie,2014,53(13):3318.
12Yetisen A K, Butt H, Volpatti L R, et al. Photonic hydrogel sensors[J].Biotechnology Advances,2016,34(3):250.
13 Richter A, Paschew G, Klatt S, et al. Review on hydrogel-based pH sensors and microsensors[J].Sensors,2008,8(1):561.
14 Yetisen A K, Naydenova I, Da C V F, et al. Holographic sensors: Three-dimensional analyte-sensitive nanostructures and their applications[J].Chemical Reviews,2014,114(20):10654.
15 Weissman J M, Sunkara H B, Tse A S, et al. Thermally switchable periodicities and diffraction from mesoscopically ordered materials[J].Science,1996,274(5289):959.
16 Asher S A, Holtz J, Liu L, et al. Self-assembly motif for creating submicron periodic materials. polymerized crystalline colloidal arrays[J].Journal of the American Chemical Society,2002,116(11):4997.
17 Ge J P, He L, Hu Y D, et al. Magnetically induced colloidal assembly into field-responsive photonic structures[J].Nanoscale,2011,3(1):177.
18 Lee K, Asher S A. Photonic crystal chemical sensors: pH and ionic strength[J].Journal of the American Chemical Society,2000,122(39):9534.
19 Xu X L, Goponenko A V, Asher S A. Polymerized polyHEMA photonic crystals: pH and ethanol sensor materials[J].Journal of the American Chemical Society,2008,130(10):3113.
20Goponenko A V, Asher S A. Modeling of stimulated hydrogel vo-lume changes in photonic crystal Pb2+ sensing materials[J].Journal of the American Chemical Society,2005,127(30):10753.
21Debord J D, Lyon L A. Thermoresponsive photonic crystals[J].The Journal of Physical Chemistry B,2000,104(27):6327.
22Honda M, Seki T, Takeoka Y. Dual tuning of the photonic band-gap structure in soft photonic crystals[J].Advanced Materials,2009,21(18):1801.
23 Jia X L, Hu Y D, Wang K, et al. Uniform core-shell photonic crystal microbeads as microcarriers for optical encoding[J].Langmuir:the ACS Journal of Surfaces & Colloids,2014,30(40):11883.
24 Sharma A C, Jana T, Kesavamoorthy R, et al. A general photonic crystal sensing motif: Creatinine in bodily fluids[J].Journal of the American Chemical Society,2004,126(9):2971.
25 Cui Q Z, Wang W, Gu B H, et al. A combined physical-chemical polymerization process for fabrication of nanoparticle-hydrogel sen-sing materials[J].Macromolecules,2012,45(20):8382.
26 Mafé S, Manzanares J A, English A E, et al. Multiple phases in io-nic copolymer gels[J].Physical Review Letters,1997,79(16):3086.
27 Zhang J T, Wang L L, Luo J, et al. 2-D array photonic crystal sen-sing motif[J].Journal of the American Chemical Society,2011,133(24):9152.
28 Tikhonov A. Reflectivity enhanced two-dimensional dielectric particle array monolayer diffraction[J].Journal of Nanophotonics,2012,6(1):063509.
29 Wang J Q, Wu Y Y, Ji X Y, et al. Progress of opal and inverse opal photonic crystals preparation[J].Materials Review A: Research Papers,2014,28(9):36(in Chinese)
王金权,吴媛媛,冀晓媛,等.蛋白石、反蛋白石结构的光子晶体的制备进展[J].材料导报:综述篇,2014,28(9):36
30Lee Y J, Braun P V. Tunable inverse opal hydrogel pH sensors[J].Advanced Materials,2003,15(7-8):563.
31Shin J, Braun P V, Lee W. Fast response photonic crystal pH sensor based on templated photo-polymerized hydrogel inverse opal[J].Sensors and Actuators B:Chemical,2010,150(1):183.
32Griffete N, Frederich H, Maître A, et al. Photonic crystal pH sensor containing a planar defect for fast and enhanced response[J].Journal of Materials Chemistry,2011,21(34):13052.
33 Griffete N, Frederich H, Maître A, et al. Inverse opals of molecularly imprinted hydrogels for the detection of bisphenol A and pH sensing[J].Langmuir:The ACS Journal of Surfaces & Colloids,2012,28(1):1005.
34 Li C, Lotsch B V. Stimuli-responsive 2D polyelectrolyte photonic crystals for optically encoded pH sensing[J].Chemical Communications,2012,48(49):6169.
35 Wang J Y, Hu Y D, Deng R H, et al. Multiresponsive hydrogel photonic crystal microparticles with inverse-opal structure[J].Langmuir:The ACS Journal of Surfaces & Colloids,2013,29(28):8825.
36 Mak S Y, Chen D H. Fast adsorption of methylene blue on polyacrylic acid-bound iron oxide magnetic nanoparticles[J].Dyes and Pigments,2004,61(1):93.
37 Wang H, Sun Y B, Chen Q W, et al. Synthesis of carbon-encapsulated superparamagnetic colloidal nanoparticles with magnetic-responsive photonic crystal property[J].Dalton Transactions,2010,39(40):9565.38 Luo W, Ma H R, Mou F Z, et al. Steric-repulsion-based magnetically responsive photonic crystals[J].Advanced Materials,2014,26(7):1058.
39 Zhang C C, Wen B, Dong Y X, et al. Research progress in magnetic-response-based photonic crystals[J].Chemical Industry and Engineering Progress,2015,34(7):1913(in Chinese).
张超灿,文斌,董一笑,等.快速磁响应光子晶体的研究进展[J].化工进展,2015,34(7):1913.
40Ma H R, Tang K, Luo W, et al. Photonic nanorods with magnetic responsiveness regulated by lattice defects[J].Nanoscale,2017,9(9):3105.
41Jia X L, Wang K, Wang J Y, et al. Full-color photonic hydrogels for pH and ionic strength sensing[J].European Polymer Journal,2016,83:60.
42Bonifacio L D, Lotsch B V, Puzzo D P, et al. Stacking the nanochemistry deck: Structural and compositional diversity in one-dimensional photonic crystals[J].Advanced Materials,2009,21(16):1641.
43 O’Reilly R K, Hawker C J, Wooley K L. Cross-linked block copolymer micelles: Functional nanostructures of great potential and versatility[J].Chemical Society Reviews,2006,35(11):1068.
44 Xia H W, Zhao J P, Meng C, et al. Amphoteric polymeric photonic crystal with U-shaped pH response developed by intercalation polymerization[J].Soft Matter,2011,7(9):4156.
45 Yue Y F, Gong J P. Tunable one-dimensional photonic crystals from soft materials[J].Journal of Photochemistry and Photobiology C:Photochemistry Reviews,2015,23:45.
46 Liu C H, Yao C, Zhu Y X, et al. Dually responsive one dimensional photonic crystals with reversible color changes[J].Sensors and Actua-tors B:Chemical,2015,220:227.
47 Bagratashvili V N, Rybaltovsky A O, Minaev N V, et al. Laser-induced atomic assembling of periodic layered nanostructures of silver nanoparticles in fluoro-polymer film matrix[J].Laser Physics Letters,2010,7(5):401.
48 Smirnova T N, Kokhtych L M, Kutsenko A S, et al. The fabrication of periodic polymer/silver nanoparticle structures: in situ reduction of silver nanoparticles from precursor spatially distributed in polymer using holographic exposure[J].Nanotechnology,2009,20(40):405301.
49 Marshall A J, Blyth J, Davidson C A B, et al. pH-sensitive holographic sensors[J].Analytical Chemistry,2003,75(17):4423.
50Martinezhurtado J L, Davidson C A, Blyth J, et al. Holographic detection of hydrocarbon gases and other volatile organic compounds[J].Langmuir:The ACS Journal of Surfaces & Colloids,2010,26(19):15694.
51Yetisen A K, Butt H, Da C V F, et al. Light-directed writing of chemically tunable narrow-band holographic sensors[J].Advanced Optical Materials,2014,2(3):250.
[1] 刘国军, 张生义, 钟明月, 张桂霞, 王艳, 余大平. BEM含量对MAA-EA-MMA共聚物乳液的pH响应性研究[J]. 材料导报, 2019, 33(8): 1422-1426.
[2] 王家滨, 牛荻涛. 喷射混凝土的硝酸侵蚀:孔溶液H+与NO3-的扩散规律及侵蚀机理[J]. 材料导报, 2019, 33(6): 991-999.
[3] 吴称意, 李聪, 张旭, 程超, 吴少尉, 周倩, 覃姗姗. 超声辅助合成多孔pH敏感性海藻酸钠水凝胶及其控释行为[J]. 《材料导报》期刊社, 2018, 32(7): 1187-1191.
[4] 张利波, 王璐, 曲雯雯, 徐盛明, 张家麟. Al2O3基石油加氢脱硫催化剂研究现状与进展[J]. 《材料导报》期刊社, 2018, 32(5): 772-779.
[5] 王丹彤,周涵,范同祥. 生物宽带反射结构色效应研究综述[J]. 材料导报, 2018, 32(19): 3465-3472.
[6] 孟佳意, 县泽宇, 李昕, 张德权. 光子晶体纤维的制备及应用*[J]. 《材料导报》期刊社, 2017, 31(5): 106-111.
[7] 林皓, 胡家朋, 刘瑞来, 饶瑞晔. 纤维素纳米纤维接枝聚丙烯酸pH响应水凝胶的制备及性能*[J]. 《材料导报》期刊社, 2017, 31(18): 55-58.
[8] 曾 琦, 李青松, 袁 伟, 周 宁, 张克勤. 非晶无序光子晶体结构色机理及其应用[J]. 材料导报, 2017, 31(1): 43-55.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed