Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (7): 1079-1083    https://doi.org/10.11896/j.issn.1005-023X.2018.07.005
  材料与可持续发展(一)—— 面向洁净能源的先进材料 |
利用二硫苏糖醇夹层抑制锂硫电池的穿梭效应
王杰, 孙晓刚, 陈珑, 邱治文, 蔡满园, 李旭, 陈玮
南昌大学机电工程学院,南昌 330031
Inhibiting the Shuttle Effect of Lithium-Sulfur Batteries by Introducing a Dithiothreitol Interlayer
WANG Jie, SUN Xiaogang, CHEN Long, QIU Zhiwen, CAI Manyuan, LI Xu, CHEN Wei
College of Mechantronics Engineering, Nanchang University, Nanchang 330031
下载:  全 文 ( PDF ) ( 1957KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为了抑制锂硫电池的穿梭效应,改善锂硫电池的电化学性能,尝试以二硫苏糖醇(DTT)为剪切剂,对高阶多硫化物进行剪切以阻止其溶解。将二硫苏糖醇(DTT)掺入多壁碳纳米管(MWCNTs)纸中,制得DTT夹层,将该DTT夹层置于锂硫扣式半电池正极片和隔膜之间,正极片的载硫面密度约为2 mg/cm2。SEM观察结果证实DTT均匀分散在MWCNTs纸的表面和空隙中。电化学测试结果表明引入DTT夹层结构的锂硫电池在0.05C倍率首次放电比容量达到1 288 mAh/g,首次库伦效率接近100%,在0.5C、2C、4C倍率下充放电时的比容量分别达到650 mAh/g、600 mAh/g、410 mAh/g。DTT夹层结构的引入可有效剪切高阶多硫化物并阻止其迁移到锂负极,从而抑制穿梭效应,改善锂硫电池的循环稳定性和库伦效率。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王杰
孙晓刚
陈珑
邱治文
蔡满园
李旭
陈玮
关键词:  锂硫电池  碳纳米管  夹层  二硫苏糖醇  剪切剂  穿梭效应    
Abstract: The present work aimed to restrain shuttle effect of lithium-sulfur (Li-S) batteries and improve the cycle perfor-mance, and made an attempt to utilize dithiothreitol (DTT) as scission reagent to prevent dissolution of lithium polysulfur (LiPS). The prefabricated MWCNTs paper was immersed in the DTT solution and dried to obtain a DTT interlayer, which was subsequently located between the cathode disk (with a sulfur areal loading of 2 mg/cm2) and the separator of a Li-S coin half-cell. The morphological and structural observation over the DTT interlayer by scanning electron microscopy (SEM) validated the uniform dispersion of DTT in the MWCNTs paper. The electrochemical test showed that the Li-S half-cell with the DTT interlayer possesses an initial discharge capacity of 1 288 mAh/g and a Coulombic efficiency approaching 100%, and moreover, maintains specific capacities of 650 mAh/g, 600 mAh/g and 410 mAh/g under the current rates of 0.5C, 2C and 4C respectively. Our experiment indicated DTT can effectively slice high-order LiPS and hinder its migration to the anode, and in consequence, significantly improve the cycle stability and Coulombic efficiency of Li-S battery.
Key words:  lithium-sulfur battery    carbon nanotube    interlayer    dithiothreitol    scission reagent    shuttle effect
               出版日期:  2018-04-10      发布日期:  2018-05-11
ZTFLH:  TM912.9  
基金资助: 江西省教育厅科研项目(20142BBE50071)
通讯作者:  孙晓刚:通信作者,男,1957年生,教授,硕士研究生导师,研究方向为碳纳米管和锂离子电池 E-mail:xiaogangsun@163.com   
作者简介:  王杰:男,1992年生,硕士研究生,研究方向为锂硫电池 E-mail:464425175@qq.com
引用本文:    
王杰, 孙晓刚, 陈珑, 邱治文, 蔡满园, 李旭, 陈玮. 利用二硫苏糖醇夹层抑制锂硫电池的穿梭效应[J]. 《材料导报》期刊社, 2018, 32(7): 1079-1083.
WANG Jie, SUN Xiaogang, CHEN Long, QIU Zhiwen, CAI Manyuan, LI Xu, CHEN Wei. Inhibiting the Shuttle Effect of Lithium-Sulfur Batteries by Introducing a Dithiothreitol Interlayer. Materials Reports, 2018, 32(7): 1079-1083.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.07.005  或          http://www.mater-rep.com/CN/Y2018/V32/I7/1079
1 Marmorstein D, Yu T H, Striebel K A. Electrochemical perfor-mance of lithium/sulfur cells with three different polymer electrolytes[J].Journal of Power Sources,2000,89(2):219.
2 Zhang S S. Liquid electrolyte lithium/sulfur battery: Fundamental chemistry, problems, and solutions[J].Journal of Power Sources,2013,231(2):153.
3 Bruce P G, Freunberger S A, Hardwick L J, et al. Li-O2 and Li-S batteries with high energy storage[J].Nature Materials,2011,11(1):19.
4 Hu Zongqian, Xie Kai. Research progress of sulfur electrode of li-thium/sulfur batteries[J].Materials Review A:Review Papers,2011,25(9):46(in Chinese).
胡宗倩,谢凯.锂硫电池硫正极材料研究现状与展望[J].材料导报:综述篇,2011,25(9):46.
5 Diao Y, Xie K, Xiong S, et al. Shuttle phenomenon—The irrever-sible oxidation mechanism of sulfur active material in Li-S battery[J].Journal of Power Sources,2013,235(4):181.
6 Li Wanfei, et al. Progress of lithium/sulfur batteries based on che-mically modified carbon[J].Acta Physico-Chimica Sinica,2017,33(1):165(in Chinese).
李宛飞,等.化学改性碳在锂硫电池中的研究进展[J].物理化学学报,2017,33(1):165.
7 Yang Y, Zheng G, Cui Y. ChemInform abstract: Nanostructured sulfur cathodes[J].Cheminform,2013,44(24):3018.
8 Zhou G, Tian H, Jin Y, et al. Catalytic oxidation of Li2S on the surface of metal sulfides for Li-S batteries[J].Proceedings of the Natio-nal Academy of Sciences of the United States of America,2017,114(5):840.
9 Liu X, Huang J Q, Zhang Q, et al. Nanostructured metal oxides and sulfides for lithium-sulfur batteries[J].Advanced Materials,2017,29(20):1601759.
10Dong Q, Wang C, Zheng M. Research progress and prospects of lithium sulfur batteries[J].Progress in Chemistry,2011,23(2):533(in Chinese).
董全峰,王翀,郑明森.锂硫电池关键材料研究进展与展望[J].化学进展,2011,23(2):533.
11Cheng J, Pan Y, Pan J A, et al. Sulfur/bamboo charcoal composites cathode for lithium-sulfur batteries[J].RSC Advances,2014,5(1):68.
12Lu S, Chen Y, Wu X, et al. Three-dimensional sulfur/graphene multifunctional hybrid sponges for lithium-sulfur batteries with large areal mass loading[J].Scientific Reports,2014,4(4):4629.
13 Wang J, Yang J, Xie J, et al. A novel conductive polymer-sulfur composite cathode material for rechargeable lithium batteries[J].Advanced Materials,2002,14(13-14):963.
14 Zhang K, Qin F, Fang J, et al. Nickel foam as interlayer to improve the performance of lithium-sulfur battery[J].Journal of Solid State Electrochemistry,2014,18(4):1025.
15 Lamoureux G V, Whitesides G M. Synthesis of dithiols as reducing agents for disulfides in neutral aqueous solution and comparison of reduction potentials[J].The Journal of Organic Chemistry,1993,58(3):633.
16 Nordstrand K, Slund F, Holmgren A, et al. NMR structure of Escherichia coli glutaredoxin 3-glutathione mixed disulfide complex: Implications for the enzymatic mechanism[J].Journal of Molecular Biology,1999,286(2):541.
17 Xiao Z, Yang Z, Nie H, et al. Porous carbon nanotubes etched by water steam for high-rate large-capacity lithium-sulfur batteries[J].Journal of Materials Chemistry A,2014,2(23):8683.
18 Yu M, Ma J, Song H, et al. Atomic layer deposited TiO2 on a nitrogen-doped graphene/sulfur electrode for high performance lithium-sulfur batteries[J].Energy & Environmental Science,2016,9(4):1495.
19 Zu C, Manthiram A. Hydroxylated graphene-sulfur nanocomposites for high-rate lithium-sulfur batteries[J].Advanced Energy Materials,2013,3(8):1008.
20Yuan Z, Peng H, Huang J, et al. Hierarchical free-standing carbon-nanotube paper electrodes with ultrahigh sulfur-loading for lithium-sulfur batteries[J].Advanced Functional Materials,2015,24(39):6105.
21Wang Xueli, Wei Junhua, Wang Qingjie, et al. Effect of sulfur content and type of collector on performance of Li/S battery[J].Battery Bimonthly,2013,43(3):151(in Chinese).
王雪丽,魏俊华,王庆杰,等.硫含量和集流体类型对锂硫电池性能的影响[J].电池,2013,43(3):151.
[1] 王惠芬, 刘刚, 曹康丽, 杨碧琦, 徐骏, 兰少飞, 张丽新. 碳纳米管材料在航天器上的应用研究现状及展望[J]. 材料导报, 2019, 33(z1): 78-83.
[2] 苏力军, 张丽娟, 宋寒, 郭慧, 郭建业, 李文静, 杨洁颖, 裴雨辰. 非压力浸渍成型技术制备夹层结构气凝胶外防热材料[J]. 材料导报, 2019, 33(z1): 206-210.
[3] 代培, 马慧玲, 矫阳, 翟茂林, 曾心苗. 纳米碳材料的辐射改性及其应用进展[J]. 材料导报, 2019, 33(3): 375-385.
[4] 王永强, 陈曦, 刘昕, 刘芳, 赵朝成, 姜珊, 吴鹏伟. MWCNT/Bi2WO6复合光催化剂的制备及其活性研究[J]. 材料导报, 2019, 33(2): 211-214.
[5] 陈玮, 聂艳艳, 孙晓刚, 李旭, 王杰. 碳化氟化石墨/碳纳米管/纤维素复合纸作为正极的高容量锂氟一次电池[J]. 材料导报, 2019, 33(14): 2293-2298.
[6] 张腾, 唐天宇, 侯仰龙. 面向锂硫电池的高负载量碳硫复合正极材料研究进展[J]. 材料导报, 2019, 33(1): 90-102.
[7] 王译文, 王海斗, 马国政, 陈书赢, 何鹏飞, 丁述宇. Ti4O7功能陶瓷材料研究与应用现状[J]. 材料导报, 2019, 33(1): 143-151.
[8] 陈子冲, 方如意, 梁 初, 甘永平, 张文魁. 锂硫电池硫正极材料研究进展[J]. 《材料导报》期刊社, 2018, 32(9): 1401-1411.
[9] 郭雅芳, 肖剑荣, 侯永宣, 齐孟, 蒋爱华. 锂硫电池隔膜改性研究进展[J]. 《材料导报》期刊社, 2018, 32(7): 1073-1078.
[10] 董怀斌,李长青,邹霞辉. 电场诱导碳纳米管在聚合物中定向有序排列的研究进展[J]. 《材料导报》期刊社, 2018, 32(3): 427-433.
[11] 张靠民, 谢涛, 赵焱, 董祥, 李如燕. 快速固化碳纳米管/苎麻纤维/环氧树脂复合材料层板的制备与性能[J]. 材料导报, 2018, 32(24): 4370-4373.
[12] 白静静, 苏会博, 刘志伟. 异氰酸酯功能化碳纳米管/热塑性聚氨酯弹性体复合材料的制备及流变性能[J]. 材料导报, 2018, 32(24): 4386-4391.
[13] 潘会, 胡轶, 兀晓文, 胡帅帅, 张浩茹. ZnO/CNTs复合材料的制备、表征及光催化性能[J]. 材料导报, 2018, 32(24): 4224-4229.
[14] 谭丰, 徐洋洋, 李卫, 徐明丽, 闵春刚, 史庆南, 刘锋, 杨喜昆. 在硫基功能化碳纳米管上组装壳层厚度可控的Au@Pt核壳纳米粒子以获得高的甲醇电催化氧化活性[J]. 材料导报, 2018, 32(23): 4041-4046.
[15] 王婧雯, 张静静, 范同祥. 碳纳米管表面处理及其在铜基复合材料中的应用[J]. 材料导报, 2018, 32(17): 2932-2939.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed