Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (2): 268-271    https://doi.org/10.11896/j.issn.1005-023X.2018.02.022
  物理   材料研究 |材料 |
密度对C/C复合材料热力学性能的影响
解惠贞1,2,孙建涛1,何轩宇1,薛朋飞1,秦淑颖1
1 西安航天复合材料研究所,西安 710025
2 高性能碳纤维制造及应用国家地方联合工程研究中心,西安 710089
Influence of Density on Mechanical and Thermal Performance of C/C Composite
Huizhen XIE1,2,Jiantao SUN1,Xuanyu HE1,Pengfei XUE1,Shuying QIN1
1 Xi’an Aerospace Composites Research Institute, Xi’an 710025;
2 National and Local Union Engineering Research Center of High-performance Carbon Fiber Manufacture and Application, Xi’an 710089;
下载:  全 文 ( PDF ) ( 2326KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 

采用针刺预制体经化学气相沉积与沥青浸渍-高压碳化致密工艺制备C/C复合材料,通过控制沥青浸渍-高压碳化致密次数,获得了密度分别为1.70 g/cm 3、1.82 g/cm 3、1.89 g/cm 3 的三种C/C材料,测试材料的力学、热学性能。结果表明材料拉伸强度随密度升高而降低。当密度较低时,纤维/基体界面结合强度相对较低,可以延缓纤维断裂的发生;拉伸断口显示出假塑性断裂特征,有利于材料拉伸强度的提高。材料的压缩强度与剪切性能密切相关,且均随密度升高表现出先升后降的趋势。材料的热膨胀系数随密度升高而增大,材料中微晶之间的空隙在受热过程中可以吸收一部分膨胀量,因此对于C/C材料,降低密度有利于降低热膨胀系数。材料导热系数随密度升高而明显增大,且随密度升高,微晶尺寸增大,有利于晶格振动的传递,从而使得导热系数增大。热应力因子随密度升高而先升后降,作为热结构件使用时,采用密度为1.82 g/cm 3的C/C材料可以获得相对较高的抗热震能力。在C/C材料研究开发中,可以综合对材料力学、热学性能的要求来对C/C材料密度指标进行设计。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
解惠贞
孙建涛
何轩宇
薛朋飞
秦淑颖
关键词:  C/C复合材料  密度  力学性能  热学性能  抗热震性能    
Abstract: 

Three kinds of C/C composites with density of 1.70 g/cm 3, 1.82 g/cm 3 and 1.89 g/cm 3 were prepared. The materials employing needled preform were densified by chemical vapor deposition and pitch impregnation-high pressure carbonization (HPIC) process. The density was controlled by times of HPIC. The results showed that the tensile strength decreased with the increasing density. When the density was low, bonding strength of interface between fiber and matrix was low which could delay the fracture of fiber and increase the tensile strength, the tensile fracture of sample possessed the characteristic of pseudo-plastic fracture. Consisted with the shear strength, the compress strength rose and then fell with the increase of density. With the increasing density, the expansion coefficient increased. Interstices among microcrystals absorbed a little amount of expansion during heating process, therefore, the fall of density was beneficial to the decrease of expansion coefficient of C/C. With the increasing density, the thermal conductivity coefficient increased obviously, and microcrystals enlarged which contribute to the transfer of vibration of crystal lattice and increase of thermal conductivity coefficient. The factor of thermal stress rose and then fell with the increasing density. The C/C with the density of 1.82 g/cm 3 possessed high thermal shock resistance as thermal structure components. In the course of C/C R&D, the density target can be designed according to synthetical demands of mechanical and thermal properties.

Key words:  C/C composite    density    mechanical properties    thermal properties    thermal shock resistance
               出版日期:  2018-01-25      发布日期:  2018-01-25
ZTFLH:  TB33  
基金资助: 国家自然科学基金(51202233)
引用本文:    
解惠贞,孙建涛,何轩宇,薛朋飞,秦淑颖. 密度对C/C复合材料热力学性能的影响[J]. 《材料导报》期刊社, 2018, 32(2): 268-271.
Huizhen XIE,Jiantao SUN,Xuanyu HE,Pengfei XUE,Shuying QIN. Influence of Density on Mechanical and Thermal Performance of C/C Composite. Materials Reports, 2018, 32(2): 268-271.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.02.022  或          http://www.mater-rep.com/CN/Y2018/V32/I2/268
Sample Bulk density
g·cm-3
Relative density
%
Porosity
%
Porosity of opening
pore/%
Percentage of opening
pore/%
1# 1.70 75.2 24.8 15.6 62.9
2# 1.82 80.5 19.5 9.9 50.8
3# 1.89 83.6 16.4 4.0 24.4
表1  三种C/C材料的密度和孔隙率
图1  拉伸强度-密度曲线
图2  不同密度C/C材料拉伸断口的SEM照片
图3  压缩强度-密度曲线
图4  剪切强度-密度曲线
图5  试样压缩破坏照片
图6  压缩破坏形态示意图
图7  弯曲强度-密度曲线
图8  热膨胀系数曲线
图9  比热容曲线
图10  导热系数曲线
Sample Density
g·cm-3
Tensile
strength
MPa
Thermal conductivity
coefficient
W·m-1·K-1
Tensile
modulus
GPa
Thermal expansion
coefficient
10-6·K-1
Thermal stress
factor
kW·m-1
1# 1.70 79.2 55.9 33.6 0.816 161.5
2# 1.82 52.5 62.7 19.1 0.891 193.4
3# 1.89 42.0 78.0 17.4 1.011 186.2
表2  不同密度C/C材料的热应力因子
1 Walter Krenkel . Ceramic matrix composites[M]. Weinheim:WILEY-VCH Verlag GmbH & Co.KGaA, 2008: 73.
2 Savage E . Carbon/carbon composites[M]. London: Chapman & Hall, 1993: 15.
3 Chuan X Y, Li H J, Lu J H . Why does cross—extinction property of pyrolytic carbon of C/C composites manufactured by CVI never disappear?[J]. Journal of Northwestern Polytechnical University, 2005,23(5):657(in Chinese).
4 传秀云, 李贺军, 卢锦花 . 化学气相渗透碳/碳复合材料热解碳光性特征——热解碳十字消光机理探讨[J]. 西北工业大学学报, 2005,23(5):657.
5 Cui Y B, Wang H, Ran X Q , et al. Thermodynamic research on pyrolysis mechanism of carbon matrix precursor ethylbenzene used for carbon/carbon material[J]. Chinese Journal of Organic Chemistry, 2004,24(9):1075(in Chinese).
6 崔彦斌, 王惠, 冉新权 , 等. 碳/碳复合材料碳源化合物乙苯热裂解机理的热力学研究[J]. 有机化学, 2004,24(9):1075.
7 Shu W B, Qiao S R, Bai S H , et al. Research on rapid electro-pyrolytic densification for C/C composites[J]. Aerospace Materials & Technology, 2000,30(6):32(in Chinese).
8 舒武炳, 乔生儒, 白世鸿 , 等. 电热解法快速致密C/C复合材料研究[J]. 宇航材料工艺, 2000,30(6):32.
9 Zhang M Y, Huang Q Z, Su Z A , et al. Preparation and microstructure analysis of C/C composites with multi-coupling fields CVI[J]. Journal of Inorganic Materials, 2006,21(6):1373(in Chinese).
10 张明瑜, 黄启忠, 苏哲安 , 等. 多元耦合场CVI法炭/炭复合材料制备及结构分析[J]. 无机材料学报, 2006,21(6):1373.
11 Lei B L, Yi M Z, Xu H J , et al. Influence of resin-derived carbon content on friction and wear performance of C/C composites[J]. Materials Science and Engineering of Powder Metallurgy, 2011,16(1):115(in Chinese).
12 雷宝灵, 易茂中, 徐惠娟 , 等. 树脂炭含量对C/C复合材料摩擦磨损性能的影响[J]. 粉末冶金材料科学与工程, 2011,16(1):115.
13 Fan M X, Li H J, Li K Z . Effect of microstructrure of pyrocarbon on the thermal properties of C/C composites[J]. Carbon Techniques, 2007,26(5):10(in Chinese).
14 范敏霞, 李贺军, 李克智 . 热解碳结构对C/C复合材料热物理性能影响[J]. 炭素技术, 2007,26(5):10.
15 Xie H Z, Fu L K, Sun J T , et al. Influence of carbon fiber distributing on ablative performance of C/C[J]. Materials Science and Enginee-ring of Powder Metallurgy, 2013,18(1):102(in Chinese).
16 解惠贞, 傅利坤, 孙建涛 , 等. 纤维分布对C/C复合材料烧蚀性能的影响[J]. 粉末冶金材料科学与工程, 2013,18(1):102.
17 Zhang S Y, Li H J, Sun J . Thermal properties and mechanical pro-perties of density gradient carbon/carbon composites[J]. Acta Materiae Compositeae Sinica, 2002,19(5):43(in Chinese).
18 张守阳, 李贺军, 孙军 . C/C密度梯度材料的热学及力学性能研究[J]. 复合材料学报, 2002,19(5):43.
19 Zhang X H, Li H J, Hao Z B , et al. Influence of needle-punching processing parameters on mechanical properties of C/C composites reinforced by carbon cloth and carbon fiber net[J]. Joarnal of Inorganic Materials, 2007,22(5):963(in Chinese).
20 张晓虎, 李贺军, 郝志彪 , 等. 针刺工艺参数对炭布网胎增强C/C材料力学性能的影响[J]. 无机材料学报, 2007,22(5):963.
21 12 乔生儒. 复合材料细观力学性能[M]. 西安: 西北工业大学出版社, 1997: 34.
22 13 Wong E Y.Solid rocket nozzle design summary[R].New York:AIAA Paper, No. 68-655,1968.
[1] 王骏齐, 张衍敏, 陈天弟, 王恒, 田遴博, 冯超, 夏金宝, 张飒飒. 不同浓度Ag掺杂ZnS的电子结构及光学性质的第一性原理研究[J]. 材料导报, 2019, 33(z1): 33-36.
[2] 刘印, 王昌, 于振涛, 盖晋阳, 曾德鹏. 医用镁合金的力学性能研究进展[J]. 材料导报, 2019, 33(z1): 288-292.
[3] 张长亮, 卢一平. 氮元素对Ti2ZrHfV0.5Mo0.2高熵合金组织及力学性能的影响[J]. 材料导报, 2019, 33(z1): 329-331.
[4] 晁代义, 徐仁根, 孙有政, 赵巍, 吕正风, 程仁策, 邵文柱. 850 ℃时效处理对2205双相不锈钢组织与力学性能的影响[J]. 材料导报, 2019, 33(z1): 369-372.
[5] 任秀秀, 朱一举, 赵省向, 韩仲熙, 姚李娜. 四种含能晶体微观力学性能与摩擦性能的关系[J]. 材料导报, 2019, 33(z1): 448-452.
[6] 周春波, 张有智, 张岳, 王煊军. 聚乙烯基石墨烯复合多孔球形材料的制备及性能表征[J]. 材料导报, 2019, 33(z1): 453-456.
[7] 薛晓武, 王新闻, 刘红波, 卿宁. 水性聚碳酸酯型聚氨酯的制备及性能[J]. 材料导报, 2019, 33(z1): 488-490.
[8] 杨康, 赵为平, 赵立杰, 梁宇, 薛继佳, 梅莉. 固化湿度对复合材料层合板力学性能的影响与分析[J]. 材料导报, 2019, 33(z1): 223-224.
[9] 候昱灼, 廖洪强, 高宏宇, 程芳琴. 不同条件下聚苯颗粒泡沫混凝土的发泡过程及发泡体性能研究[J]. 材料导报, 2019, 33(z1): 234-238.
[10] 平学龙, 符寒光, 孙淑婷. 激光熔覆制备硬质颗粒增强镍基合金复合涂层的研究进展[J]. 材料导报, 2019, 33(9): 1535-1540.
[11] 薛翠真, 申爱琴, 郭寅川. 基于孔结构参数的掺CWCPM混凝土抗压强度预测模型的建立[J]. 材料导报, 2019, 33(8): 1348-1353.
[12] 王宇鲲, 魏永刚, 彭博, 李博, 周世伟. 镁质贫镍红土矿热分解理论计算与实验研究[J]. 材料导报, 2019, 33(8): 1406-1411.
[13] 孙娅, 吴长军, 刘亚, 彭浩平, 苏旭平. 合金元素对CoCrFeNi基高熵合金相组成和力学性能影响的研究现状[J]. 材料导报, 2019, 33(7): 1169-1173.
[14] 李响, 毛萍莉, 王峰, 王志, 刘正, 周乐. 长周期有序堆垛相(LPSO)的研究现状及在镁合金中的作用[J]. 材料导报, 2019, 33(7): 1182-1189.
[15] 郭丽萍, 谌正凯, 陈波, 杨亚男. 生态型高延性水泥基复合材料的可适性设计理论与可靠性验证Ⅰ:可适性设计理论[J]. 材料导报, 2019, 33(5): 744-749.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed