Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (24): 179-181    https://doi.org/10.11896/j.issn.1005-023X.2017.024.035
  材料研究 |
不锈钢车顶弯梁拉弯成形研究
朱丽娟,王 敏,谷诤巍,何玲玲
吉林大学材料科学与工程学院,长春130022
Research on Stretch Bending Forming of Stainless Steel Curved Beam
ZHU Lijuan, WANG Min, GU Zhengwei, HE Lingling
College of Materials Science and Engineering, Jilin University, Changchun 130022
下载:  全 文 ( PDF ) ( 514KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 利用ABAQUS软件,对某轨道车辆的不锈钢车顶弯梁的拉弯成形过程进行了模拟研究,分析了L形型材拉弯后截面畸变及回弹的影响因素及控制方法。结果表明:模具立边深度对截面畸变的影响较大,拉伸量对其影响相对较小;包覆拉伸量对回弹时发生的截面扭曲的影响最大,补拉量对回弹时发生的侧面弯曲的影响最大;采用模具型面补偿法可以有效减小回弹,提高轮廓精度。实验证明,当预拉量和补拉量为1%、包覆拉伸量为7.5%和模具立边深度为H-0.5 mm并且模具型面补偿量为最大回弹量的1.1倍时,可以制造出高质量的不锈钢型材拉弯件。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
朱丽娟
王 敏
谷诤巍
何玲玲
关键词:  拉弯成形  弯梁  数值模拟  回弹    
Abstract: The stretch bend forming process of roof curve beam with stainless steel of rail vehicle was simulated by ABAQUS. The influence factors and control methods of the section distortion and the springback of L-section profile after bending were studied. Results showed that the vertical depth of the mold had great influence on the section distortion, while, the effect of stretching on the section distortion was relatively small. The wrap-elongation had the largest impact on the section distortion caused by the springback, the post-elongation had the largest impact on the side bending caused by springback. The mold surface compensation method could effectively reduce the springback, improve the accuracy of the contour. The experimental results showed that when the amount of pre-elongation and the amount of post-elongation were both 1%, the amount of wrap-elongation was 7.5%, the depth of the die was H-0.5 mm and the die surface amount was 1.1 times of the initial maximum springback amount, high quality stainless steel profile stretch bending parts could be produced.
Key words:  stretch bending    curve beam    numerical simulation    springback
               出版日期:  2017-12-25      发布日期:  2018-05-08
ZTFLH:  TG386  
基金资助: 国家自然科学基金青年科学基金(51301074);吉林省科技发展计划项目(2013010201JC)
通讯作者:  谷诤巍:男,1970年生,博士,教授,研究方向为金属板材成形技术 E-mail:gzweii@163.com   
作者简介:  朱丽娟:女,1979年生,博士,副教授,研究方向为高强度钢的强韧化机理 E-mail:ljzhu@jlu.edu.cn
引用本文:    
朱丽娟,王 敏,谷诤巍,何玲玲. 不锈钢车顶弯梁拉弯成形研究[J]. 《材料导报》期刊社, 2017, 31(24): 179-181.
ZHU Lijuan, WANG Min, GU Zhengwei, HE Lingling. Research on Stretch Bending Forming of Stainless Steel Curved Beam. Materials Reports, 2017, 31(24): 179-181.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.024.035  或          http://www.mater-rep.com/CN/Y2017/V31/I24/179
1 Frank V. Extrusion, channel, and extrusion bending: A review[J].J Mater Processing Technol, 1999,87:1.
2 Gu Zhengwei, Liu Huamin, Liu Yumei, et al. Simulation of stretch bending forming process of stainless section steel[J].Die Mould Ind, 2006(8):42(in Chinese).
谷诤巍,刘化民,刘玉梅,等. 不锈钢型材拉弯成形工艺模拟研究[J]. 模具工业,2006(8):42.
3 Diao Keshan, Zhou Xianbin, Jin Chaohai, et al. A numerical study on the force controlled stretch bending of aluminum extrusion with complex cross section[J]. Mater Sci Technol, 2004,12(4):413(in Chinese).
刁可山,周贤宾,金朝海,等. 复杂截面型材力控制拉弯成形数值模拟分析[J]. 材料科学与工艺,2004,12(4):413.
4 Paulsen F, Welo T. Application of numerical simulation in the bending of aluminium-alloy profiles[J].J Mater Processing Technol, 1996,58(2):274.
5 Diao Keshan, Zhou Xianbin, Li Xiaoxing, et al. Stretch bending of aluminum extrusion[J]. J Beijing University of Aeronautics, 2005,31(2):134(in Chinese).
刁可山, 周贤宾, 李晓星, 等. 矩形截面型材拉弯成形[J].北京航空航天大学学报, 2005,31(2):134.
6 Hopperstad O S, Berstad T, Ilstad H, et al. Effects of the yield criterion on local deformations in numerical simulation of profile forming[J]. J Mater Processing Technol, 1998,80-81(1):551.
7 Clausen A H, Hopperstad O S, Langseth M. Sensitivity of model parameters in stretch bending of aluminum extrusions[J]. Int J Mech Sci,2001,43(2):427.
8 Wang Shengman. Research on stretch bend forming of railway vehicle stainless steel profile components by numerical simulation and experiment[D].Dalian:Dalian Jiaotong University,2013(in Chinese).
王胜满. 轨道车辆车体不锈钢型材构件拉弯成形数值模拟与实验研究[D].大连:大连交通大学,2013.
[1] 于海群. 底部保温结构对大尺寸蓝宝石晶体生长影响的数值模拟及实验研究[J]. 材料导报, 2019, 33(z1): 37-40.
[2] 崔利群, 韩胜利, 李达人, 胡建召, 刘祖岩. 钨铜粉末轧制的数值模拟研究[J]. 材料导报, 2019, 33(z1): 358-361.
[3] 杨亚涛, 郭宝超, 龚宏伟, 蒋恩. 基于有限元分析的第三代压水堆支承柱组件激光焊接工艺研究[J]. 材料导报, 2019, 33(z1): 420-424.
[4] 王泳丹, 刘子铭, 郝培文. 综论沥青的疲劳损伤自愈合行为:理论研究,评价方法,影响因素,数值模拟[J]. 材料导报, 2019, 33(9): 1517-1525.
[5] 陈祥楷, 李向明. 探究二元共晶的生长过程:实时原位观察、数值模拟与解析解研究[J]. 材料导报, 2019, 33(5): 871-880.
[6] 浦娟, 谢依汝, 胡庆贤, 胥国祥, 朱蔡琛. 单缆式焊丝GMAW电弧物理行为的数值模拟[J]. 材料导报, 2019, 33(4): 689-693.
[7] 徐从昌, 叶拓, 唐明, 郭鹏程, 唐徐, 吴远志, 李落星. 动态载荷下7005铝合金力学行为及数值模拟[J]. 材料导报, 2019, 33(4): 670-673.
[8] 代文杰,潘诗琰,申小平,徐驰,范沧. 介观尺度下液相烧结过程的数值模拟研究进展[J]. 材料导报, 2019, 33(17): 2929-2938.
[9] 魏岑,李向明. 一种不稳定的共晶生长方式:倾斜共晶生长的研究进展[J]. 材料导报, 2019, 33(15): 2532-2537.
[10] 李文旭,马昆林,龙广成,谢友均,马聪,李宁. 自密实混凝土拌合物稳定性动态监测及数值模拟研究进展[J]. 材料导报, 2019, 33(13): 2206-2213.
[11] 丁述宇, 马国政, 徐滨士, 王海斗, 陈书赢, 何鹏飞, 王译文. 等离子喷涂层微观成形过程数值模拟研究现状[J]. 材料导报, 2019, 33(11): 1889-1896.
[12] 田捍卫, 王爱琴, 谢敬佩, 苌清华, 刘帅洋. 铜铝复合板铸轧工艺优化及实验分析[J]. 材料导报, 2019, 33(10): 1706-1711.
[13] 安晓龙, 吕云卓, 覃作祥, 陆兴. 同轴送粉激光3D打印光粉耦合作用以及熔池气液界面追踪数值模拟的研究进展[J]. 材料导报, 2019, 33(1): 167-174.
[14] 耿汝伟, 杜军, 魏正英, 魏培. 金属增材制造中微观组织相场法模拟研究进展[J]. 《材料导报》期刊社, 2018, 32(7): 1145-1150.
[15] 席翔, 夏延秋, 李晓鹤, 冯欣. 颗粒填充型聚合物的导热性能与摩擦磨损性能研究[J]. 《材料导报》期刊社, 2018, 32(4): 681-688.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed