Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (24): 150-155    https://doi.org/10.11896/j.issn.1005-023X.2017.024.030
  材料研究 |
原位观察不同冷却速率下GH3625合金的凝固过程
丁雨田,豆正义,高钰璧,高 鑫,李海峰,刘德学
兰州理工大学材料科学与工程学院,省部共建有色金属先进加工与再利用国家重点实验室,兰州 730050
In-situ Observation of Solidification Process of GH3625 Superalloy at Different Cooling Rates
DING Yutian, DOU Zhengyi, GAO Yubi, GAO Xin, LI Haifeng, LIU Dexue
Key Laboratory of Advanced Processing and Recycling of Nonferrous Metals, College of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050
下载:  全 文 ( PDF ) ( 776KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 利用带有红外加热炉的共聚焦激光扫描显微镜(CLSM)对GH3625高温合金在不同冷却速率(30 ℃/min、100 ℃/min和200 ℃/min)下的凝固过程进行了动态原位观察,通过差示扫描量热分析仪(DSC)、扫描电镜(SEM)和能谱仪(EDS)研究了凝固后的组织形态及相的析出规律。结果表明,GH3625合金的液相线温度在1 356.5 ℃,在凝固过程中自由表面液相分数随温度和时间的变化关系满足Avrami方程;凝固过程中主要相的析出顺序依次为γ基体相、碳化物和Laves相;在GH3625合金凝固过程中,随着冷却速率的增大,枝晶细化,枝晶间距减小,成分偏析减轻,Laves相分布更加弥散,且以析出共晶Laves相为主;凝固末期大量的Nb元素富集在枝晶间和晶界,这是形成Laves相的主要原因。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
丁雨田
豆正义
高钰璧
高 鑫
李海峰
刘德学
关键词:  GH3625高温合金  共聚焦激光扫描显微镜  冷却速率  凝固  Laves相    
Abstract: The solidification process of the GH3625 superalloy was in-situ observed at different cooling rates (30 ℃/min, 100 ℃/min and 200 ℃/min ) by means of confocal laser scanning microscope combined with an infrared image furnace. Differential scanning calorimeter (DSC), scanning electron microscope (SEM) and energy dispersive spectrometer (EDS) were adopted to observe the solidified microstructure and the regularity of precipitated phases. The results showed that the liquidus temperature of GH3625 superalloy was 1 356.5 ℃, and the relationship between the variation of solid phase content at the free surface and temperature as well as time was in accordance with Avrami equation. With the decrease of temperature, the precipitation sequence of phases were γ matrix phase, carbides and Laves phase. In the solidification process of GH625 superalloy, with the increasing cooling rate, the dendritic structure refined, the dendrite arm spacing decreased, component segregation reduced, the Laves phase distribution was more dispersed, and mainly precipitated eutectic Laves phase. A large number of Nb segregation occurred in the final period of solidification at the interdendritic and grain boundaries, and this mainly contributes to the formation of Laves phase.
Key words:  GH3625 superalloy    confocal laser scanning microscope    cooling rate    solidification    Laves phase
               出版日期:  2017-12-25      发布日期:  2018-05-08
ZTFLH:  TG146.1+5  
基金资助: 甘肃省重大科技专项(145RTSA004);国家自然科学基金(51661019)
作者简介:  丁雨田:男,1962年生,博士,教授,博士研究生导师,研究方向为高温合金 E-mail:Dingyutian@126.com 豆正义:男,1990年生,硕士研究生,研究方向为高温合金热变形 E-mail:douzyi@sina.com
引用本文:    
丁雨田,豆正义,高钰璧,高 鑫,李海峰,刘德学. 原位观察不同冷却速率下GH3625合金的凝固过程[J]. 《材料导报》期刊社, 2017, 31(24): 150-155.
DING Yutian, DOU Zhengyi, GAO Yubi, GAO Xin, LI Haifeng, LIU Dexue. In-situ Observation of Solidification Process of GH3625 Superalloy at Different Cooling Rates. Materials Reports, 2017, 31(24): 150-155.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.024.030  或          http://www.mater-rep.com/CN/Y2017/V31/I24/150
1 郭建亭. 高温合金材料学[M]. 北京:科学出版社, 2008:4.
2 中国航空材料手册编委会. 中国航空材料手册[M]. 北京:中国标准出版社, 2002:238.
3 Peng Z, Xie F, Zhang J, et al. Effect of undercooling on microstructure evolution in IN718 superalloy[J]. Rare Metal Mater Eng, 2013,42(10):1988.
4 Sun W R, Guo S R, Lu D Z, et al. Effect of sulfur on the solidification and segregation in Inconel 718 alloy[J]. Maters Lett, 1997,31(3):195.
5 Silva C C, Miranda H C D, Motta M F, et al. New insight on the solidification path of an alloy 625 weld overlay[J]. J Mater Res Technol, 2013,2(3):228.
6 Wang L, Dong J X, Li C Q. Effect of cooling rate on the segregation and Rayleigh number of IN718 during solidification[J]. J University of Science and Technology Beijing, 2007,29(12):1222(in Chinese).
王玲, 董建新, 李传起. 冷速对IN718凝固过程中偏析和Rayleigh数的影响[J]. 北京科技大学学报, 2007,29(12):1222.
7 Kim J H, Kim S G, Inoue A. In site observation of solidification behavior in undercooled Pd-Cu-Ni-P alloy by using a confocal scanning laser microscope[J]. Acta Mater, 2001,49(4):615.
8 Huang F X, Zhang J M, Wang X H, et al. In-situ observation of engulfment and pushing of non-metallic inclusions at solidifying interface[J]. J Iron Steel Res, 2008,20(5):14(in Chinese).
黄福祥, 张炯明, 王新华, 等. 夹杂物在钢液凝固前沿行为的原位动态观察[J]. 钢铁研究学报, 2008,20(5):14.
9 Miao Z J. Study on solidification segregation and homogenization process of IN718 series superalloy[D]. Shanghai: Shanghai Jiaotong University, 2011(in Chinese).
繆竹骏. IN718系列高温合金凝固偏析及均匀化处理工艺研究[D]. 上海: 上海交通大学,2011.
10Wang W, Xuan F Z, Miao Z J, et al. In-site observation of solidification process of GH4169 superalloy at different cooling rates[J]. Mater Mech Eng, 2011,35(9):65(in Chinese).
王威, 轩福贞, 繆竹骏, 等. 不同冷速下GH4169高温合金凝固过程的原位观察[J]. 机械工程材料, 2011,35(9):65.
11Shibata H, Yin H, Yoshinaga S, et al. In-situ observation of engulfment and pushing of nonmetallic inclusions in steel melt by advancing melt/solid interface[J]. ISIJ Int, 1998,38(2):149.
12Huang Q J, Liu G Q. Application of microsoft word in quantitative microstructure analysis[J]. Chin J Stereology Image Anal, 2002,7(3):182(in Chinese).
黄启今, 刘国权. 通用软件 Microsoft Word 在显微组织定量分析中的应用[J]. 中国体视学与图像分析, 2002,7(3):182.
13胡汉起. 金属凝固原理[M]. 北京: 机械工业出版社, 1991:101.
14Miao Z J, Shan A D, Wang W, et al. Solidification process of conventional superalloy by confocal scanning laser microscope[J]. Trans Nonferrous Met Soc China, 2011,21(2):236.
15Yi T L, Pu L N, Zhu G L. Segregation of niobium in laser cladding Inconel 718 superalloy[J]. Trans Nonferrous Met Soc China, 2016, 26(2):431.
16Andenna G. Primary and secondary dendrite spacing of Ni-based superalloy single crystals[J]. J Serbian Chem Soc, 2009,74(1):61.
17Aminorroaya S, Dippenaar R. A novel approach to simulate segregation at the centreline of continuously cast steel using laser-scanning confocal microscopy[J]. J Microscopy, 2007,227(2):87.
18Chen S N, Lai C, Yu H, et al. Effect of cooling rate on non-equilibrium solidified microstructure of Ni-Nb alloy[J]. Rare Metal Mater Eng, 2015,44(6):1539(in Chinese).
陈胜娜, 赖存, 余欢, 等. 冷却速率对Ni-Nb合金非平衡凝固组织的影响[J]. 稀有金属材料与工程, 2015,44(6):1539.
19Cleslak M J, Headley T J. A melting and solidification study of alloy 625[J]. Metall Trans A, 1988,19(9):2319.
20Dong J X, Zhang M C, Zeng Y P. Calculation of Nb segregation behvaior in liquid phase for Nb-rich superalloys[J]. J University of Science and Technology Beijing, 2005,27(2):198(in Chinese).
董建新, 张麦仓, 曾燕屏. 含铌高温合金液相中铌偏聚行为[J]. 北京科技大学学报, 2005, 27(2):198.
21高义民. 金属凝固原理[M]. 西安:西安交通大学出版社, 2007:50.
22Schirra J J, Caless R H, Hatala R W. The effect of laves phase on the mechanical properties of wrought and cast + HIP Inconel 718[C]∥Superalloys, 1991:375.
[1] 杨金祥, 石爽, 姜大川, 李旭, 李鹏廷, 谭毅, 姚玉杰, 池明, 张润德, 张建帅. 多晶硅定向凝固过程中温度对凝固速率的影响[J]. 材料导报, 2019, 33(z1): 28-32.
[2] 卢百平, 崔春娟, 田露露, 问亚岗, 王佩. 布里奇曼定向凝固Ni-12%Si过共晶的弹性模量与断裂韧性[J]. 材料导报, 2019, 33(8): 1383-1388.
[3] 陈祥楷, 李向明. 探究二元共晶的生长过程:实时原位观察、数值模拟与解析解研究[J]. 材料导报, 2019, 33(5): 871-880.
[4] 吴光亮, 武尚文, 张永集, 孟征兵. 氮合金化HRB500E钢筋连铸传热过程模拟及配水工艺优化[J]. 材料导报, 2019, 33(5): 731-738.
[5] 刘飞, 尹健, 邵琦, 卢春辉. 脉冲磁场对高含量自生Mg2Si/Mg-Al基复合材料凝固组织的影响[J]. 材料导报, 2019, 33(2): 293-297.
[6] 朱靖, 李勇, 王莹, 李焕, 赵亚茹. 不同定向凝固速率下Cu-2.5%Cr合金中带状组织的形成机理[J]. 材料导报, 2019, 33(2): 309-313.
[7] 魏岑,李向明. 一种不稳定的共晶生长方式:倾斜共晶生长的研究进展[J]. 材料导报, 2019, 33(15): 2532-2537.
[8] 田捍卫, 王爱琴, 谢敬佩, 苌清华, 刘帅洋. 铜铝复合板铸轧工艺优化及实验分析[J]. 材料导报, 2019, 33(10): 1706-1711.
[9] 李勇, 朱靖, 王莹, 李焕, 赵亚茹. 定向凝固Cu-0.33Cr-0.1Ti亚共晶合金中带状组织的形成机理[J]. 《材料导报》期刊社, 2018, 32(4): 602-605.
[10] 康智强, 张煜博, 杨雪, 冯国会, 张林. Al-Bi过偏晶合金凝固过程中富Bi相分布规律研究[J]. 《材料导报》期刊社, 2018, 32(4): 598-601.
[11] 霍苗, 刘林, 黄太文, 杨文超, 李亚峰, 王晓娟, 张军, 傅恒志. 镍基单晶高温合金小角度晶界的形成机制、影响因素与控制措施[J]. 材料导报, 2018, 32(19): 3394-3404.
[12] 陈茜, 陈庆, 梁永超, 高廷红, 郭笑天, 田泽安, 谢泉, 何帆. 冷速对液态GaAs快速凝固过程中微观结构的影响[J]. 《材料导报》期刊社, 2018, 32(14): 2351-2354.
[13] 苏文佳, 牛文清, 齐小方, 李琛, 王军锋. 定向凝固法多晶硅杂质控制数值模拟概述[J]. 《材料导报》期刊社, 2018, 32(11): 1795-1805.
[14] 郭廷彪,李 琦,王 晨,张 锋, 丁雨田,贾 智,唐兴昌. 低温等通道转角挤压中定向凝固纯铜的组织及性能演变[J]. 《材料导报》期刊社, 2018, 32(10): 1650-1654.
[15] 邵 博,孔祥忠,韩 星,张余磊,秦 克,张海涛,崔建忠. 动态布流平面凝固铸造AA1070/AA7050合金[J]. 《材料导报》期刊社, 2017, 31(24): 141-144.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed